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Overview 
This document presents my comments on the report of Rettie et al. (2024) regarding 
caribou movements near the Ekati Diamond Mine: 

Rettie, W.J., R.S. Rempel, and L.M. Ainsworth. 2024. Barren-ground caribou 
movement analyses from telemetry data. Ekati Diamond Mine Wildlife Effects 
Monitoring. Report prepared by Paragon Wildlife Research and Analysis Ltd., 
Winnipeg, MB for Arctic Canadian Diamond Company Ltd. 

My comments on this report are generally negative. I have some serious concerns 
about the misunderstanding of the models used here as well as the overall analysis. As a 
result of these concerns, I have low confidence in the robustness of the results presented 
and their subsequent interpretation to meet the objectives stated in the report. I have 
organized my main concerns into sections that deal with (1) misunderstood models, (2) 
covariate screening, (3) model validation, (4) movement characterization, and (5) 
pseudoreplication. I explain my concerns in depth in their respective sections below, but 
here I will briefly summarize.  

My first section of comments deals with misunderstood models, specifically 
misunderstanding the distinctions between habitat selection functions (HSFs), step 
selection functions (SSFs, sensu Fortin et al. 2005), and integrated step selection functions 
(iSSFs, sensu Avgar et al. 2016). HSFs are synonymous with resource selection functions 
(RSFs, sensu Manly et al. 2002), but they are not a component of (i)SSFs as was implied by 
Rettie et al. (2024) in this report. Furthermore, SSFs are not iSSFs without a movement 
model; rather, they are more like an iSSF where the movement model is assumed rather 
than estimated, resulting in biased habitat selection parameters. Rettie et al. (2024) used 
SSFs in place of iSSFs for the stated purpose of being able to predict without a movement 
simulation. This is a false distinction and an incorrect use of these models. Furthermore, 



these misunderstandings in the models propagated to improper use of a fixed habitat 
kernel in Phase II models and incorrect assertions about having properly modeled 
movements using an iSSF in the section on movement characterization (Section 3.10).  

My second section of comments deals with the effects of covariate screening on the 
resulting inference. The workflow itself has many layers of covariate screening/model 
selection prior to inference. Inference follows null hypothesis significance testing (NHST), 
i.e., Rettie et al. used p-values to determine whether an effect was statistically significant. 
Despite widespread appreciation that any data-driven variable screening process will bias 
p-values (e.g., Freedman 1983), Rettie et al. used 3 screening steps in Phase I and a fourth 
screening step in Phase II prior to drawing inference. Phase III repeated the steps of Phase I 
and Phase II, but on finer scale (1-h) data, so the same concerns apply. Each of the 
variables presented in Table 2-3 (landcover, oestrid, and mosquito variables) are more 
prone to be spurious correlations than their p-values reflect. However, the fourth screening 
method used only in Phase II (and the latter half of Phase III) was the Bayesian Information 
Criterion (BIC), which is more conservative than Akaike Information Criterion (AIC); i.e., it 
tends to favor models with fewer variables. Rettie et al. favored AIC in Phase I, but they 
favored BIC in Phase II when considering the mine-related variables (presented in Table 2-
4). They did not provide a detailed rationale for why they should treat the mine-related 
variables differently and more conservatively than the other variables. 

My third section of comments deals with model validation. iSSFs are typically fit 
with conditional logistic regression; however, the true underlying model that they assume is 
not actually conditional logistic regression. Rather, by randomly sampling available steps, 
the analyst is actually using numerical integration to estimate an integral in the likelihood 
of the iSSF (Michelot et al. 2024). Fitted iSSFs are often evaluated/validated using 
approaches developed for binary (1/0) data, but care must be taken to understand how 
these metrics generalize to the iSSF. In this report, Rettie et al. improperly used statistics 
applicable only to binary data to evaluate model performance. Their results showed poor 
performance in an absolute sense, but they still claimed positive results by asserting 
similarly poor performance of the fitted models in-sample and out-of-sample. My opinion 
is that these metrics are an unreliable test of model validity. 

My fourth section of comments deals with movement characterization. The 
movement characterization section of the report is meant to directly address the concerns 
raised in the report by Poole et al. (2021) that concluded the Ekati mine affects caribou 
movements. Due to the misunderstanding of the distinction between SSF and iSSF, and 
due to the particular parameterization of what Rettie et al. termed an “iSSF”, those models 
could not provide inference on changes in movement patterns due to mine infrastructure. 



Despite this, Rettie et al. argued that their “iSSFs” were “considered statistically more 
appropriate and stronger analyses for these data” (p. 30) compared to the methods of 
Poole et al. (2021). I agree that an iSSF is an ideal model for addressing these questions, 
but Rettie et al. did not parameterize their models properly to achieve that goal. Instead, 
they provided simple linear regressions of movement metrics (step length and turn angle) 
that do not account for the habitat selection process.  

My fifth section of comments deals with pseudoreplication. Data used in this study 
were collected as repeated measures of individual caribou, but the inferences drawn were 
at the population level. Appropriate analyses of these data should have used mixed effects 
models to account for repeated measures on individuals, which are widely available for 
iSSFs. 

Taken together, these comments demonstrate why I have low confidence in the 
robustness of the results presented and their subsequent interpretation to meet the 
objectives stated in the report. I find it hard to say what effect the issues I have raised might 
have had on the conclusions of the report. The report doesn’t explicitly state strong 
conclusions about effects. The deeper problem is that the analysis doesn’t contain key 
results that stem from a robust test. It seems to me that the analysis suffers from too many 
flaws to support any conclusions about effects of the mine on caribou movements. 

Clarifying Objectives 
Before I address my specific comments, I think it is useful to recapitulate the stated 
objectives of this report through the lens of the desired outcome. The objectives presented 
by Rettie et al. in this report, taken verbatim from Section 1.1, were (indented and italicized 
text are direct quotes from p. 2): 

The broad questions addressed in this report are: 
1. Are there effects of the Ekati Diamond Mine on fine-scale barren-ground 
caribou behaviour? 
2. What are the effects and what are their causes? 
3. At what scale do the effects occur? 
4. Are effects specific to different seasons or sexes? and 
5. What is the magnitude of the effects? 

 
And later: 

Additionally, the analyses in this report test the season-specific effect of exposure of 
caribou to the area within 30 km of the Ekati and Diavik mines on: 

6. Total distance moved within the season; and 
7. Delay in arrival time on the next seasonal range. 



 

Further detail given in the objectives section (Section 1.1) indicated that other objectives 
were to “provide quantitative analyses for direct comparison with summary information in 
Poole et al. (2021).” 

Clarifying the objective of an analysis is a key first step in developing an analysis 
workflow; i.e., clarifying whether the goal of the analysis exploration, inference, or 
prediction (Tredennick et al. 2021). Given the stated objectives of Rettie et al., and given a 
pre-existing hypothesis (from Poole et al. 2021 regarding the effects of the mine on 
movement), I posit that the objective of this report was to draw inference on whether or not 
the mine has an effect on movement or habitat selection of caribou. If this is true, the goal 
of an analyst ought to be to construct a model (or a small set of models) to test the 
important hypotheses. Often, there should be a clear, a priori link between the model 
structure and the specific hypotheses themselves. From that well-constructed model (or 
small model set), the analyst can determine how much evidence favors one particular 
hypothesis over another. 

Contrast that approach with the approach of a descriptive study. In a descriptive 
study, there may be many variables possibly of interest, relationships may be poorly 
understood, and the analyst might be seeking potential patterns to formulate specific 
hypotheses (Tredennick et al. 2021). While it would be entirely appropriate to have a large 
number of candidate variables (possibly at multiple spatial scales) and to use model 
selection to identify the strongest patterns, such an approach would not lend itself to 
inference. There is a rich body of literature on this topic, both within ecology and wildlife 
biology and in many other applied fields. 

The introduction and objectives of the report by Rettie et al. seem to indicate (but do 
not directly state) that inference was the primary goal in this study. However, the analysis 
workflow more closely resembles that of a descriptive study, calling into question the 
validity of any inference drawn from the analyses. 

Misunderstood Models 
In some literature, “habitat selection analysis” is used as a catch-all to refer to any 
approach that measures habitat selection (i.e., habitat use disproportionate to habitat 
availability) (Fieberg et al. 2021); that is the way Rettie et al. use the term HSA and the way I 
will use it going forward. Unfortunately, the term “habitat selection function” (HSF) has not, 
in parallel, been used as a catch-all to refer to any parameterized function that returns 
habitat selection values. Rather, it has been used as an alternative term for a resource 



selection function (RSF) to emphasize that “habitat” can be comprised of resources 
(increase an animal’s fitness), risks (decrease an animal's fitness), and conditions 
(increase fitness only within a certain range) (Fieberg et al. 2021). RSFs are an HSA that 
have been in use since the 1990s (Boyce & McDonald 1999; Manly et al. 2002) and remain 
very popular today; Rettie et al. did not use RSFs (although they refer to HSFs throughout) in 
this report. RSFs do not assume any movement model, they are agnostic to time, and they 
thus assume used habitat locations are completely independent. This is a poor 
assumption for modern telemetry datasets (GPS or similar) that have high fix rates with a 
strong signal of autocorrelation, but it is conducive to projecting the fitted function in 
geographic space (Signer et al. 2017) to make a map of relative selection strength (Avgar et 
al. 2017). 

Step selection functions were developed to deal with the autocorrelation in GPS (or 
similar) telemetry datasets by defining available habitat at the step level (Fortin et al. 2005). 
Step selection functions are comprised of two components: a movement-independent 
habitat selection kernel (i.e., a function) and a habitat-selection-independent movement 
kernel (Fieberg et al. 2021; Michelot et al. 2024; Signer et al. 2024). The realized 
movements of the tracked animal reflect both of these processes (habitat selection and 
movement), but statistically, we can parameterize them as two independent kernels. The 
original SSF presented by Fortin et al. (2005) assumed the movement kernel was known; 
i.e., it was not estimated statistically (Michelot et al. 2024). Forester et al. (2009) pointed 
out that this induced a bias in the estimation of the habitat selection parameters and that 
bias could be alleviated by accounting for the movement process in the estimation of the 
model (recently reiterated by Michelot et al. 2024). Avgar et al. (2016) formalized this idea 
by showing how parametric movement kernels could be estimated with standard 
regression techniques, thus fully estimating both the habitat selection and movement 
kernels in a single model. Avgar et al. (2016) termed this analysis integrated step selection 
analysis (iSSA) and the resulting function an integrated step selection function (iSSF). 
Contrast that terminology with the use of the terms HSA and HSF, which are not parallel, as 
I discussed above. Rettie et al. largely covered this history (see Section 2.8, p. 18) with 
these relevant citations, but also seemed to introduce important misconceptions along the 
way.  

First, they refer to the movement-free habitat selection kernel of the iSSF as an HSF 
– this is not consistent with any of the literature they cited. Although it may seem like 
splitting hairs to differentiate the HSF from the “movement-free habitat selection kernel,” 
they are not the same. The key distinction is that the latter is conditional on the habitat-
selection-free movement kernel, and prediction without that movement kernel is 
undefined, just as prediction from a multiple linear regression is undefined without all the 



predictor variables. Importantly, it also incorrectly implies that the movement-free habitat 
selection kernel can be used as an HSF would be used to produce a map of relative 
selection strength. In fact, this projection of the movement-free habitat selection kernel is 
shown in Fig. 2 and Figs. 3-6 through 3-26. This is incorrect, as shown by Signer et al. 
(2017). Rettie et al. noted that these maps did not account for the movement process in 
Section 2.8.5 (p. 23) and correctly cited Signer et al. (2017) stating that predicting selection 
from iSSAs requires (typically) movement simulations. However, they incorrectly stated 
that these “analytical processes … are not advanced in their development.” A general 
approach for these simulations has been available in the R package ‘amt’ for multiple years 
now, and a peer reviewed publication detailing the approach in ‘amt’ is now published 
(Signer et al. 2024). It is true that simulating from a fitted iSSA prior to this typically required 
some custom coding, but multiple papers have shown this (including Signer et al. 2017) 
and reviewed the overall approach (Potts & Börger 2022). The literature is clear that it is 
incorrect to project the movement-free habitat selection kernel in space to make a map. 

Second, after (incorrectly) explaining that the process for movement simulations is 
not developed, they presented a non-sequitur, “Consequently, SSA was chosen for Phase I 
analyses, and movement covariates for turning angle and step length were excluded from 
candidate models.” This is not a logical consequence of failing to simulate from a fitted 
iSSF. As I described above, an ordinary SSF (as presented by Fortin et al. 2005) still contains 
a movement kernel, but it is assumed known rather than estimated statistically. The 
consequence of that, as I described above, is that the estimation of the habitat selection 
coefficients is biased (Forester et al. 2009). This does not alleviate the previously stated 
problem, but rather it creates a new one. The movement-free habitat selection kernel is 
now likely estimated with some unknown amount of bias, but it still cannot be naively 
projected in space (reviewed by Potts & Börger 2022). 

Third, after completing Phase I (including multiple rounds of covariate screening, 
next section) and arriving at a selected Phase I model, Rettie et al. used this model to 
create a “covariate” for the Phase II models, which they termed “RSFrisk” (Table 2-4), 
reiterating the misconception that the movement-free habitat selection kernel is an RSF. 
They used “RSFrisk” as the only habitat covariate in their new “iSSA Base model” (Table 2-
4), inexplicably assuming that the previously estimated habitat selection coefficients must 
remain fixed in their new model. This is an unjustified assumption. They included log of 
step length and cosine of turn angle in this base model, which is fairly standard in an iSSA, 
as I will explain below. From the base model, they created a set of 9 additional models 
including a single covariate related to the mine infrastructure, modeled as a parabola 
(including a squared term) and interacting with the fixed “RSFrisk” variable.  



Fourth, notwithstanding the fact that the “RSFrisk” variable was an inappropriate 
treatment of habitat, these 9 additional models only test the hypothesis that the mine 
infrastructure could change the movement-free habitat selection kernel by modulating 
selection for the “RSFrisk” variable. Based on the conclusions of Poole et al. (2021), Rettie 
et al. expressed an interest in testing whether or not the mine and/or mine infrastructure 
affected caribou movement (objectives 1, 6, and 7). None of these models were structured 
to test the effect of mine infrastructure on the selection-free movement kernel, which 
would have required interactions between cosine of turn angle, log of step length, step 
length, and the mine variables.  

To explain why, I will briefly explain how iSSA estimates the selection-free movement 
kernel. The key difference between ordinary SSA and iSSA is that, in iSSA, the (randomly 
generated) available steps are sampled from a parametric step length distribution (e.g., the 
gamma distribution, which Rettie et al. used) and a parametric turn angle distribution (e.g., 
the von Mises distribution, which Rettie et al. used). The parameters of the gamma and von 
Mises distribution are typically estimated by fitting them to the observed step length 
(gamma) and turn angle (von Mises) distributions. I will refer to these fitted distributions, 
which are used to create the available steps, as the “tentative distributions”. Then, 
movement terms are included in the model formula to update the parameters of the 
tentative distributions. The coefficients for the movement terms are used in particular 
formulas to arithmetically update the tentative parameters to the estimated parameters of 
the selection-free movement kernel (Avgar et al. 2016; Fieberg et al. 2021). Which 
movement terms are included in the model formula depends on which distributions are 
chosen (see Fieberg et al. 2021, Appendix C). To update the gamma distribution, the 
analyst should include step length and log of step length, and to update the von Mises 
distribution, the analyst should include cosine of turn angle. These updated distributions 
are the focus of inference, and the coefficients themselves should not be interpreted in the 
same way coefficients from the movement-free habitat selection kernel are interpreted.  

Rettie et al. included log of step length (but not step length) and cosine of turn angle 
in their “iSSA Base model”; however, after BIC model selection (discussed in the next 
section), the movement parameters were often removed. For those models where the 
movement parameters were not removed, those models assumed a constant selection-
free movement kernel. Rather than reporting the updated selection-free movement 
kernels, Rettie et al. presented only incorrect interpretations of the movement parameters 
in their report (Section 3.7, p. 44). Had Rettie et al. included interactions between the mine 
variables and the movement parameters, they would have been able to make direct 
inference on the effects of the mine on caribou movement (see Fieberg et al. 2021, 
Appendix B, for examples). Unfortunately, they did not include these interactions, despite 



their assertion that their models characterized movements (see my section on Movement 
Characterization for more discussion). In my opinion, leaving these parameters out of the 
model directly contradicts some of the stated objectives of this report. 

Covariate Screening 
There are well known statistical issues that arise when combining data-driven covariate 
screening procedures with NHST (typically p-value based inference; e.g., Freedman 1983). 
In that sense, the analysis framework presented by Rettie et al. is particularly problematic. 
Here, I present a brief summary of their analysis workflow meant to highlight the number of 
filtering steps. I denote those steps that represent covariate screening with an asterisk: 

• Phase I (8-hour data): 
o * Boosted regression tree; keep only covariates with relative influence > 1 
o * “StepAIC” GLMs; filter models using deviance ratio and AIC score 
o Fit conditional logistic regression; * AIC used to choose single best model. 
o Evaluate best model 

• Phase II (8-hour data): 
o Start with w(x) predicted from Phase I model 
o Add movement covariates (log of step length, cosine of turn angle) and mine-

related covariates 
o *Use BIC to select the best model 

• Phase III: 
o Start with data reduction to handle unequal sampling between individuals 
o Repeat steps from Phase I (***) and Phase II (*) 

There are four screening steps, and any one of them should be expected to increase 
the probability of a Type-I error above that estimated in the p-value calculations. Rettie et 
al. used three screening steps in Phase I and a fourth screening step in Phase II prior to 
drawing inference. Phase III repeated the steps of Phase I and Phase II, but on finer scale 
(1-h) data, so my concerns about Phase I and Phase II also apply to Phase III. I cannot 
quantify how much each screening step made the problem progressively worse – it is 
possible that using one screening step would have the same effect as using four screening 
steps if they were using comparable criteria. However, that seems unlikely. Each of the 
multiple screening methods has the potential to create a bias toward spurious correlations 
(Type-I errors). This is true for the Phase I variables presented in Table 2-3 (landcover, 
oestrid, and mosquito variables). Conversely, the fourth screening method used only in 
Phase II (and the latter half of Phase III) was the Bayesian Information Criterion (BIC), which 
is more conservative than Akaike Information Criterion (AIC); i.e., it tends to favor models 



with fewer variables. Rettie et al. favored AIC in Phase I (for landcover, oestrid, and 
mosquito variables), but favored BIC in Phase II when considering the mine-related 
variables (presented in Table 2-4). They did not provide a detailed rationale for why they 
should treat the mine-related variables differently and more conservatively than the other 
variables.  

Given my assumption that this is a study geared toward inference, the model 
building process should have focused on testing a small number of a priori hypotheses, 
while controlling for other important drivers of habitat selection. There is a large literature 
on caribou habitat selection throughout their range that could have been used to guide the 
model building process, plus the key addition of mine-related variables to test (i.e., draw 
inference about) the effect of the mine on caribou behavior. Instead, the report of Rettie et 
al. largely resembles a descriptive analysis consisting of data dredging and covariate 
screening/model selection across multiple spatial scales. 

Model Validation 
Model evaluation and validation is a critical step in any analysis. Especially when overfitting 
or spurious correlations are a concern, validating with out-of-sample data can alleviate 
many concerns. Rettie et al. presented model validation metrics based on out-of-sample 
data; however, their approach was focused narrowly on evaluating binary responses, which 
is not always appropriate for iSSFs. 

 iSSFs are typically fit with conditional logistic regression; however, the true 
underlying model that they assume is not actually conditional logistic regression. Rather, 
by randomly sampling available steps, the analyst is actually using numerical integration to 
estimate an integral in the likelihood of the iSSF (Michelot et al. 2024). Fitted iSSFs are 
often evaluated/validated using approaches developed for binary data, but care must be 
taken to understand how these metrics generalize to the iSSF. In this report, Rettie et al. 
improperly used statistics applicable only to binary data to evaluate model performance. 
Their results showed poor performance in an absolute sense, but they still claimed positive 
results by asserting similarly poor performance of the fitted models in-sample and out-of-
sample. My opinion is that these metrics are an unreliable test of model validity. 

Rettie et al. state that “overall performance of the top SSA models was assessed 
using Rho2

adj.” They provide no further description of the method, the software used, or a 
citation, so I cannot be sure exactly how this statistic was calculated and how it compares 
with a standard R2 or pseudo-R2 statistic. Nevertheless, they stated that it ranged from 0 to 
1, with values of 1 indicating better performance. Furthermore, they used four other 



metrics that depend on the user defining a “cut-point”: percent correct classification 
(PCC), sensitivity, specificity, and Kappa. No further detail is given in the report about how 
the cut-point was chosen or exactly how it was used. However, in evaluating a binary 
classifier, the model predictions are continuous probabilities between 0 and 1, but the 
observed data is either 0 or 1. A cut-point is typically used to classify smaller probabilities 
as 0s and larger probabilities as 1s for the purposes of calculating PCC, sensitivity, and 
specificity. I am not familiar with “Kappa”, reported by Rettie et al. to be “a measure of the 
agreement between predicted and true values”, so I will not comment further on it.  

Choosing a particular cut-point is a subjective decision (again, Rettie et al. do not 
describe how they chose each different cut-point for each model). To avoid this, many 
analysts choose a statistic called area under the curve (AUC), referring to the receiver-
operator characteristic curve, which is a plot of sensitivity vs. 1 minus specificity, for many 
values (ranging between 0 to 1) of the cut-point. The AUC statistic is designed for binary 
classifiers, but it has an intuitive interpretation for RSFs: it is the probability that a randomly 
chosen used point has a higher RSF score than a randomly chosen available point. AUC is 
not appropriate for iSSFs because those models are stratified; the generalization of AUC to 
the stratified case is called concordance and is widely used to evaluate SSFs. The 
measures of PCC, sensitivity, and specificity reported by Rettie et al. are conditional on the 
cut-points, which I would assume were chosen to maximize at least one of those 
quantities. If my assumption is correct, it suggests that this evaluation tends to be too 
optimistic. Furthermore, the 0s in this conditional logistic regression (the available steps) 
are not data (they are sampled by the analyst) but are rather used to numerically estimate 
an integral. Thus, specificity – in particular – does not evaluate data at all, and PCC and 
sensitivity are still not motivated from first principles under this model. 

Despite being generally inappropriate validation metrics, and despite my 
assumption that they tend to be generally optimistic, the performance metrics also tend to 
be low (Appendices: Tables C-1 – C18; Tables E-1 – E-14). Rho2

adj values for the 8-h models 
were as low as ~ 0.01 and as high as ~ 0.08 (Appendices: Tables C-1 – C-18). Rho2

adj values 
for the 1-h models were as low as ~ 0.02 and as high as ~ 0.15 (Appendices: Tables E-1 – E-
14). It’s unclear if these values are “bad” because of the lack of detail on how they are 
calculated; sometimes pseudo-R2 for the true generating model under a GLM (with 
overdispersion) can be very low. There’s just not enough information to tell. 

Furthermore, in discussing the low Rho2
adj values, Rettie et al. stated, “This limited 

explanation of behaviour is a consequence of analyses that appropriately restricts 
available habitat to a plausible set of locations based on the movement time interval and 
the movement patterns of individual animals,” (p. 80). I do not think this statement can be 



substantiated. I think it’s more a consequence of the metric used to assess model fit, 
combined with relatively poor fit. It is not generally true that goodness of fit statistics for an 
iSSF should be low. They continue, “Little change in relative selective value arises when 
observed short distance movement steps are matched with random short distance 
movement steps originating at the same location – available and used locations have 
similar attributes and selection at this scale is limited.” (p. 80). This statement is absolutely 
not true. It is entirely possible in theory to have – and there are many published papers that 
show – strong selection strengths over short movements. 

For the other metrics, Rettie et al. stated that, “PCC is viewed as the most important 
measure” (p. 43) and “model validation depends on the performance of the model for the 
test data closely matching the performance of the train data,” (p. 45). I disagree that this is 
a reasonable criterion for model validation. A very poorly fit model will perform poorly on 
the in-sample and the out-of-sample data; that the in-sample performance is also poor 
does not give me confidence in the model. In conclusion, I disagree with the choice of 
metrics for model evaluation, but nonetheless, the metrics that were presented suggested 
to me poor overall performance. 

Movement Characterization 
Rettie et al. devoted a section of the report to movement characterization. This section is 
meant to directly address the concerns raised in the report by Poole et al. (2021) that 
concluded the Ekati mine affects caribou movements. Due to the misunderstanding of the 
distinction between SSF and iSSF, and due to the particular parameterization of what Rettie 
et al. termed an “iSSF”, those models could not provide inference on changes in movement 
patterns due to mine infrastructure. Despite this, Rettie et al. argued that their “iSSFs” were 
“considered statistically more appropriate and stronger analyses for these data” (p. 30) 
compared to the methods of Poole et al. (2021). I agree that an iSSF is an ideal model for 
addressing these questions, but Rettie et al. did not parameterize their models properly to 
achieve that goal. In fact, the models they fit are not iSSFs in many cases.  

Rettie et al. did provide simple linear regressions of movement metrics (step length 
and turn angle). Rettie et al. correctly noted that, “The simple relationship of caribou 
movements to the proximity of mine infrastructure is confounded by habitat selection and 
the spatial distribution of natural environmental features.” However, they then incorrectly 
asserted that, “These relationships were explicitly addressed through iSSAs as described in 
Section 2.8.” (Section 2.9, p. 29). The structure of their models did not, in any way, address 
the effect of habitat selection on movement (as I covered in detail in the section, 
“Misunderstood Models”). To accomplish this, they would have needed to include 



interactions between their movement variables (log of step length and cosine of turn angle) 
and the mine variables, which they did not. This was a missed opportunity to draw 
inference directly related to their stated objectives (objectives 1, 6, and 7) while controlling 
for the effects of habitat selection that they acknowledged confound the observed 
movement statistics. This makes direct analysis of step lengths and turn angles tricky, but I 
would generally accept this as a descriptive exercise. Drawing inference from these 
descriptive analyses is unreliable, notwithstanding my objections about pseudoreplication. 

Pseudoreplication 
Data used in this study were collected as repeated measures of individual caribou. 

The ecological and wildlife literature are full of examples of consistent individual variation 
in habitat selection (Leclerc et al. 2016) and cautions about the importance of accounting 
for individual-level autocorrelation using mixed effects models (Gillies et al. 2006; Muff et 
al. 2020). There are other approaches to accounting for individual variation in population 
estimates, such as a two-step modeling procedure (Craiu et al. 2011). Rettie et al. seemed 
to have ignored this problem. They did not address it at all in Phase I and Phase II. In Phase 
III, they used data reduction (Section 2.8.8.1) to balance the sample by thinning any 
individual dataset with more than the median locations (p. 27). Data reduction reduces 
statistical power, increasing the probability of a Type-II error. More simply, many methods 
exist that would allow an analyst to fit an iSSF with random slopes for balanced population-
level inference without sacrificing information (Craiu et al. 2011; Klappstein et al. 2024; 
Muff et al. 2020). Additionally, the ordinary linear regressions that Rettie et al. presented to 
characterize movement metrics did not account for individual identity. Using a standard 
linear mixed model in this context would be absolutely expected for valid inference. 

Minor Comments 
These comments are minor relative to my previous comments. In my opinion, none of the 
following are terribly problematic on their own, but taken together and combined with my 
major concerns above, they reflect on an unreliable analysis. 

• Section 2.4.2, p. 9: the seasonal UD analyses seem mostly unrelated to the 
objectives. However, it seems like Rettie et al. did very little to address the 
autocorrelation in the data. While they did subset the data to one location per 
animal per day, I would still expect autocorrelation to be strong at the daily scale in 
animals that have such large ranges over the year. A better estimate of the UD could 
have been obtained by fitting and AKDE home range that accounts for the 



autocorrelation in the data (Fleming et al. 2015; Silva et al. 2021). This would have 
required no data thinning. 

• Section 2.5.3, p. 12: I don’t like the data-driven process to identify the spatial 
resolution of covariates. Yes, it is common in the literature, but it is inherently 
descriptive, as I have mentioned elsewhere. Identifying the scale at which caribou 
select a particular land cover type was not the objective here, and this was an 
unnecessary step when the focus should have been on the effect of the mine 
variables. 

• Section 2.8.1.1, p. 19: the authors stated, “locations with prior steps of 0 m length 
were removed.” Steps of exactly 0 length are typically impossible given the precision 
of GPS collars is no better than a few meters; instead, they typically arise because 
of something like duplicate fixes (by the collar) or data duplication during the data 
management process. However, this is typically handled during data cleaning and 
prior to creating steps. That these likely errors persisted through the process of 
creating steps might suggest that the data cleaning protocol was not thorough. The 
data cleaning process indicated that, “Data were then screened to remove duplicate 
locations…” (p. 8), but this doesn’t seem to have been thorough. 

• Section 2.8.1.1, p. 19: five available steps per used step is low. The available steps 
are used for numerical estimation of an integral (Michelot et al. 2024), and few 
available steps make for very coarse estimation. A small number of available steps 
also leads to low resolution in model evaluation (e.g., using an appropriate statistic 
like concordance). 

• Section 2.8.3, p. 20: there’s no description of the rationale for using boosted 
regression trees at any point. This is not a standard approach for fitting iSSFs, and 
while it should generally work with any binary classifier, the true model of interest is 
not binary. 

• Section 2.8.3, p. 21: “In preliminary analyses, collinearity was initially detected, with 
some VIF values approaching 20, but when proportional cover by water derived from 
landcover layers was replaced with proportion waterbody area derived from CanVec 
Series - Hydrographic Features (Natural Resources Canada 2019), collinearity (VIF) 
was greatly reduced.” This is vague and concerning. So is the later treatment of VIF < 
5 as a non-problem and the non-reporting of which variables showed high 
collinearity with the other variables in the model. 

• Section 2.8.5, p. 25: “By definition, the top ranked model from the SSA for each sex 
by season are the Step Selection Functions (SSFs).” By what definition? There is no 
general consensus that the top-ranked model from an SSA is called an SSF. 



• Section 2.8.6, p. 27: “By definition, the top ranked models from the iSSA for each sex 
by season are the integrated Step Selection Functions (iSSFs).” Same comment as 
above. This is not convention or definition. 

• Table 2-5: Why not combine multiple mine-related variables in a single model? And 
why not consider interactions between variables? E.g., a reasonable hypothesis is 
that caribou avoid mine roads more strongly when they are close to the mine itself. 
That calls for an interaction between the mine and mine roads covariates. 

• Table 3-2, Table 3-3, p. 33: I don’t get a sense of how many individuals were removed 
or the effect of removing individuals on the resulting inference. 

• Table 3-9, p. 40: I would have liked to have seen all the VIFs. 
• Section 3.6: reporting of quadratic effects (e.g., p. 42) is poor. They are presented as 

an independent result from the linear effect for the same term. In fact, using a linear 
and quadratic term actually parameterizes a parabola, rather than a line. These two 
terms represent a basis expansion, meaning that they are not independent and 
shouldn’t be interpreted as independent effects. The predictor is still a single 
dimension, but there are two parameters governing that predictor’s relationship with 
the response variable.  

• Section 3.8, p. 46: “Phase 2 iSSFs provide a better fit to data… than the Phase 1 
SSFs…” This is somewhat obvious. By taking Phase I models and offering a model 
selection routine a chance to add covariates, the fit can only improve. 

• Section 3.8, p. 47: “Though not part of formal analyses…” Is this stating that figures 
3-6 – 3-19 are not part of the analysis? This is the majority of the results figures. 

• Section 4, p. 79: Rettie et al. stated that the covariates for herd, season, sex, and 
year are “best addressed with separate sets of models.” However, they note that this 
would result in 252 potential model sets, “an unmanageable number.” I agree that 
this is far too many model sets. This further highlights the descriptive and data-
dredging tendencies of this analysis. There are pros and cons to representing these 
factors as separate models vs. interactions in the main model, and those pros and 
cons are not mentioned anywhere. 
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