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Overview

This document presents my comments on the report of Rettie et al. (2024) regarding
caribou movements near the Ekati Diamond Mine:

Rettie, W.J., R.S. Rempel, and L.M. Ainsworth. 2024. Barren-ground caribou
movement analyses from telemetry data. Ekati Diamond Mine Wildlife Effects
Monitoring. Report prepared by Paragon Wildlife Research and Analysis Ltd.,
Winnipeg, MB for Arctic Canadian Diamond Company Ltd.

My comments on this report are generally negative. | have some serious concerns
about the misunderstanding of the models used here as well as the overall analysis. As a
result of these concerns, | have low confidence in the robustness of the results presented
and their subsequent interpretation to meet the objectives stated in the report. | have
organized my main concerns into sections that deal with (1) misunderstood models, (2)
covariate screening, (3) model validation, (4) movement characterization, and (5)
pseudoreplication. | explain my concerns in depth in their respective sections below, but
here | will briefly summarize.

My first section of comments deals with misunderstood models, specifically
misunderstanding the distinctions between habitat selection functions (HSFs), step
selection functions (SSFs, sensu Fortin et al. 2005), and integrated step selection functions
(iISSFs, sensu Avgar et al. 2016). HSFs are synonymous with resource selection functions
(RSFs, sensu Manly et al. 2002), but they are not a component of (i))SSFs as was implied by
Rettie et al. (2024) in this report. Furthermore, SSFs are not iSSFs without a movement
model; rather, they are more like an iSSF where the movement model is assumed rather
than estimated, resulting in biased habitat selection parameters. Rettie et al. (2024) used
SSFs in place of iSSFs for the stated purpose of being able to predict without a movement
simulation. This is a false distinction and an incorrect use of these models. Furthermore,



these misunderstandings in the models propagated to improper use of a fixed habitat
kernel in Phase Il models and incorrect assertions about having properly modeled
movements using an iSSF in the section on movement characterization (Section 3.10).

My second section of comments deals with the effects of covariate screening on the
resulting inference. The workflow itself has many layers of covariate screening/model
selection prior to inference. Inference follows null hypothesis significance testing (NHST),
i.e., Rettie et al. used p-values to determine whether an effect was statistically significant.
Despite widespread appreciation that any data-driven variable screening process will bias
p-values (e.g., Freedman 1983), Rettie et al. used 3 screening steps in Phase | and a fourth
screening step in Phase Il prior to drawing inference. Phase lll repeated the steps of Phase |
and Phase Il, but on finer scale (1-h) data, so the same concerns apply. Each of the
variables presented in Table 2-3 (landcover, oestrid, and mosquito variables) are more
prone to be spurious correlations than their p-values reflect. However, the fourth screening
method used only in Phase Il (and the latter half of Phase lll) was the Bayesian Information
Criterion (BIC), which is more conservative than Akaike Information Criterion (AIC); i.e., it
tends to favor models with fewer variables. Rettie et al. favored AIC in Phase |, but they
favored BIC in Phase Il when considering the mine-related variables (presented in Table 2-
4). They did not provide a detailed rationale for why they should treat the mine-related
variables differently and more conservatively than the other variables.

My third section of comments deals with model validation. iSSFs are typically fit
with conditional logistic regression; however, the true underlying model that they assume is
not actually conditional logistic regression. Rather, by randomly sampling available steps,
the analyst is actually using numerical integration to estimate an integral in the likelihood
of the iSSF (Michelot et al. 2024). Fitted iSSFs are often evaluated/validated using
approaches developed for binary (1/0) data, but care must be taken to understand how
these metrics generalize to the iSSF. In this report, Rettie et al. improperly used statistics
applicable only to binary data to evaluate model performance. Their results showed poor
performance in an absolute sense, but they still claimed positive results by asserting
similarly poor performance of the fitted models in-sample and out-of-sample. My opinion
is that these metrics are an unreliable test of model validity.

My fourth section of comments deals with movement characterization. The
movement characterization section of the report is meant to directly address the concerns
raised in the report by Poole et al. (2021) that concluded the Ekati mine affects caribou
movements. Due to the misunderstanding of the distinction between SSF and iSSF, and
due to the particular parameterization of what Rettie et al. termed an “iSSF”, those models
could not provide inference on changes in movement patterns due to mine infrastructure.



Despite this, Rettie et al. argued that their “iISSFs” were “considered statistically more
appropriate and stronger analyses for these data” (p. 30) compared to the methods of
Poole et al. (2021). | agree that an iSSF is an ideal model for addressing these questions,
but Rettie et al. did not parameterize their models properly to achieve that goal. Instead,
they provided simple linear regressions of movement metrics (step length and turn angle)
that do not account for the habitat selection process.

My fifth section of comments deals with pseudoreplication. Data used in this study
were collected as repeated measures of individual caribou, but the inferences drawn were
at the population level. Appropriate analyses of these data should have used mixed effects
models to account for repeated measures on individuals, which are widely available for
iSSFs.

Taken together, these comments demonstrate why | have low confidence in the
robustness of the results presented and their subsequent interpretation to meet the
objectives stated in the report. | find it hard to say what effect the issues | have raised might
have had on the conclusions of the report. The report doesn’t explicitly state strong
conclusions about effects. The deeper problem is that the analysis doesn’t contain key
results that stem from a robust test. It seems to me that the analysis suffers from too many
flaws to support any conclusions about effects of the mine on caribou movements.

Clarifying Objectives

Before | address my specific comments, | think it is useful to recapitulate the stated
objectives of this report through the lens of the desired outcome. The objectives presented
by Rettie et al. in this report, taken verbatim from Section 1.1, were (indented and italicized
text are direct quotes from p. 2):

The broad questions addressed in this report are:
1. Are there effects of the Ekati Diamond Mine on fine-scale barren-ground
caribou behaviour?
2. What are the effects and what are their causes?
3. At what scale do the effects occur?
4. Are effects specific to different seasons or sexes? and
5. What is the magnitude of the effects?

And later:
Additionally, the analyses in this report test the season-specific effect of exposure of
caribou to the area within 30 km of the Ekati and Diavik mines on:
6. Total distance moved within the season; and
7. Delay in arrival time on the next seasonal range.



Further detail given in the objectives section (Section 1.1) indicated that other objectives
were to “provide quantitative analyses for direct comparison with summary information in
Poole et al. (2021).”

Clarifying the objective of an analysis is a key first step in developing an analysis
workflow; i.e., clarifying whether the goal of the analysis exploration, inference, or
prediction (Tredennick et al. 2021). Given the stated objectives of Rettie et al., and given a
pre-existing hypothesis (from Poole et al. 2021 regarding the effects of the mine on
movement), | posit that the objective of this report was to draw inference on whether or not
the mine has an effect on movement or habitat selection of caribou. If this is true, the goal
of an analyst ought to be to construct a model (or a small set of models) to test the
important hypotheses. Often, there should be a clear, a priori link between the model
structure and the specific hypotheses themselves. From that well-constructed model (or
small model set), the analyst can determine how much evidence favors one particular
hypothesis over another.

Contrast that approach with the approach of a descriptive study. In a descriptive
study, there may be many variables possibly of interest, relationships may be poorly
understood, and the analyst might be seeking potential patterns to formulate specific
hypotheses (Tredennick et al. 2021). While it would be entirely appropriate to have a large
number of candidate variables (possibly at multiple spatial scales) and to use model
selection to identify the strongest patterns, such an approach would not lend itself to
inference. There is a rich body of literature on this topic, both within ecology and wildlife
biology and in many other applied fields.

The introduction and objectives of the report by Rettie et al. seem to indicate (but do
not directly state) that inference was the primary goal in this study. However, the analysis
workflow more closely resembles that of a descriptive study, calling into question the
validity of any inference drawn from the analyses.

Misunderstood Models

In some literature, “habitat selection analysis” is used as a catch-all to refer to any
approach that measures habitat selection (i.e., habitat use disproportionate to habitat
availability) (Fieberg et al. 2021); that is the way Rettie et al. use the term HSA and the way |
will use it going forward. Unfortunately, the term “habitat selection function” (HSF) has not,
in parallel, been used as a catch-all to refer to any parameterized function that returns
habitat selection values. Rather, it has been used as an alternative term for a resource



selection function (RSF) to emphasize that “habitat” can be comprised of resources
(increase an animal’s fitness), risks (decrease an animal's fitness), and conditions
(increase fitness only within a certain range) (Fieberg et al. 2021). RSFs are an HSA that
have been in use since the 1990s (Boyce & McDonald 1999; Manly et al. 2002) and remain
very popular today; Rettie et al. did not use RSFs (although they refer to HSFs throughout) in
this report. RSFs do not assume any movement model, they are agnostic to time, and they
thus assume used habitat locations are completely independent. This is a poor
assumption for modern telemetry datasets (GPS or similar) that have high fix rates with a
strong signal of autocorrelation, but it is conducive to projecting the fitted function in
geographic space (Signer et al. 2017) to make a map of relative selection strength (Avgar et
al. 2017).

Step selection functions were developed to deal with the autocorrelation in GPS (or
similar) telemetry datasets by defining available habitat at the step level (Fortin et al. 2005).
Step selection functions are comprised of two components: a movement-independent
habitat selection kernel (i.e., a function) and a habitat-selection-independent movement
kernel (Fieberg et al. 2021; Michelot et al. 2024; Signer et al. 2024). The realized
movements of the tracked animal reflect both of these processes (habitat selection and
movement), but statistically, we can parameterize them as two independent kernels. The
original SSF presented by Fortin et al. (2005) assumed the movement kernel was known;
i.e., it was not estimated statistically (Michelot et al. 2024). Forester et al. (2009) pointed
out that this induced a bias in the estimation of the habitat selection parameters and that
bias could be alleviated by accounting for the movement process in the estimation of the
model (recently reiterated by Michelot et al. 2024). Avgar et al. (2016) formalized this idea
by showing how parametric movement kernels could be estimated with standard
regression techniques, thus fully estimating both the habitat selection and movement
kernels in a single model. Avgar et al. (2016) termed this analysis integrated step selection
analysis (iISSA) and the resulting function an integrated step selection function (iSSF).
Contrast that terminology with the use of the terms HSA and HSF, which are not parallel, as
| discussed above. Rettie et al. largely covered this history (see Section 2.8, p. 18) with
these relevant citations, but also seemed to introduce important misconceptions along the
way.

First, they refer to the movement-free habitat selection kernel of the iSSF as an HSF
—this is not consistent with any of the literature they cited. Although it may seem like
splitting hairs to differentiate the HSF from the “movement-free habitat selection kernel,”
they are not the same. The key distinction is that the latter is conditional on the habitat-
selection-free movement kernel, and prediction without that movement kernel is
undefined, just as prediction from a multiple linear regression is undefined without all the



predictor variables. Importantly, it also incorrectly implies that the movement-free habitat
selection kernel can be used as an HSF would be used to produce a map of relative
selection strength. In fact, this projection of the movement-free habitat selection kernel is
shown in Fig. 2 and Figs. 3-6 through 3-26. This is incorrect, as shown by Signer et al.
(2017). Rettie et al. noted that these maps did not account for the movement process in
Section 2.8.5 (p. 23) and correctly cited Signer et al. (2017) stating that predicting selection
from iSSAs requires (typically) movement simulations. However, they incorrectly stated
that these “analytical processes ... are not advanced in their development.” A general
approach for these simulations has been available in the R package ‘amt’ for multiple years
now, and a peer reviewed publication detailing the approach in ‘amt’ is now published
(Signer et al. 2024). It is true that simulating from a fitted iSSA prior to this typically required
some custom coding, but multiple papers have shown this (including Signer et al. 2017)
and reviewed the overall approach (Potts & Borger 2022). The literature is clear that it is
incorrect to project the movement-free habitat selection kernel in space to make a map.

Second, after (incorrectly) explaining that the process for movement simulations is
not developed, they presented a non-sequitur, “Consequently, SSA was chosen for Phase |
analyses, and movement covariates for turning angle and step length were excluded from
candidate models.” This is not a logical consequence of failing to simulate from a fitted
iSSF. As | described above, an ordinary SSF (as presented by Fortin et al. 2005) still contains
a movement kernel, but it is assumed known rather than estimated statistically. The
consequence of that, as | described above, is that the estimation of the habitat selection
coefficients is biased (Forester et al. 2009). This does not alleviate the previously stated
problem, but rather it creates a new one. The movement-free habitat selection kernel is
now likely estimated with some unknown amount of bias, but it still cannot be naively
projected in space (reviewed by Potts & Borger 2022).

Third, after completing Phase | (including multiple rounds of covariate screening,
next section) and arriving at a selected Phase | model, Rettie et al. used this model to
create a “covariate” for the Phase Il models, which they termed “RSFrisk” (Table 2-4),
reiterating the misconception that the movement-free habitat selection kernel is an RSF.
They used “RSFrisk” as the only habitat covariate in their new “iSSA Base model” (Table 2-
4), inexplicably assuming that the previously estimated habitat selection coefficients must
remain fixed in their new model. This is an unjustified assumption. They included log of
step length and cosine of turn angle in this base model, which is fairly standard in an iSSA,
as | will explain below. From the base model, they created a set of 9 additional models
including a single covariate related to the mine infrastructure, modeled as a parabola
(including a squared term) and interacting with the fixed “RSFrisk” variable.



Fourth, notwithstanding the fact that the “RSFrisk” variable was an inappropriate
treatment of habitat, these 9 additional models only test the hypothesis that the mine
infrastructure could change the movement-free habitat selection kernel by modulating
selection for the “RSFrisk” variable. Based on the conclusions of Poole et al. (2021), Rettie
etal. expressed an interest in testing whether or not the mine and/or mine infrastructure
affected caribou movement (objectives 1, 6, and 7). None of these models were structured
to test the effect of mine infrastructure on the selection-free movement kernel, which
would have required interactions between cosine of turn angle, log of step length, step
length, and the mine variables.

To explain why, | will briefly explain how iSSA estimates the selection-free movement
kernel. The key difference between ordinary SSA and iSSA is that, in iSSA, the (randomly
generated) available steps are sampled from a parametric step length distribution (e.g., the
gamma distribution, which Rettie et al. used) and a parametric turn angle distribution (e.g.,
the von Mises distribution, which Rettie et al. used). The parameters of the gamma and von
Mises distribution are typically estimated by fitting them to the observed step length
(gamma) and turn angle (von Mises) distributions. | will refer to these fitted distributions,
which are used to create the available steps, as the “tentative distributions”. Then,
movement terms are included in the model formula to update the parameters of the
tentative distributions. The coefficients for the movement terms are used in particular
formulas to arithmetically update the tentative parameters to the estimated parameters of
the selection-free movement kernel (Avgar et al. 2016; Fieberg et al. 2021). Which
movement terms are included in the model formula depends on which distributions are
chosen (see Fieberg et al. 2021, Appendix C). To update the gamma distribution, the
analyst should include step length and log of step length, and to update the von Mises
distribution, the analyst should include cosine of turn angle. These updated distributions
are the focus of inference, and the coefficients themselves should not be interpreted in the
same way coefficients from the movement-free habitat selection kernel are interpreted.

Rettie et al. included log of step length (but not step length) and cosine of turn angle
in their “iSSA Base model”; however, after BIC model selection (discussed in the next
section), the movement parameters were often removed. For those models where the
movement parameters were not removed, those models assumed a constant selection-
free movement kernel. Rather than reporting the updated selection-free movement
kernels, Rettie et al. presented only incorrect interpretations of the movement parameters
in their report (Section 3.7, p. 44). Had Rettie et al. included interactions between the mine
variables and the movement parameters, they would have been able to make direct
inference on the effects of the mine on caribou movement (see Fieberg et al. 2021,
Appendix B, for examples). Unfortunately, they did not include these interactions, despite



their assertion that their models characterized movements (see my section on Movement
Characterization for more discussion). In my opinion, leaving these parameters out of the
model directly contradicts some of the stated objectives of this report.

Covariate Screening

There are well known statistical issues that arise when combining data-driven covariate
screening procedures with NHST (typically p-value based inference; e.g., Freedman 1983).
In that sense, the analysis framework presented by Rettie et al. is particularly problematic.
Here, | present a brief summary of their analysis workflow meant to highlight the number of
filtering steps. | denote those steps that represent covariate screening with an asterisk:

e Phase | (8-hour data):
o * Boosted regression tree; keep only covariates with relative influence > 1
o *“StepAlC” GLMs; filter models using deviance ratio and AIC score
o Fit conditional logistic regression; * AlC used to choose single best model.
o Evaluate best model

e Phasell (8-hour data):
o Start with w(x) predicted from Phase | model
o Add movement covariates (log of step length, cosine of turn angle) and mine-

related covariates

o *Use BIC to select the best model

e Phaselll:
o Start with data reduction to handle unequal sampling between individuals
o Repeat steps from Phase | (***) and Phase Il (*)

There are four screening steps, and any one of them should be expected to increase
the probability of a Type-I error above that estimated in the p-value calculations. Rettie et
al. used three screening steps in Phase | and a fourth screening step in Phase Il prior to
drawing inference. Phase lll repeated the steps of Phase | and Phase Il, but on finer scale
(1-h) data, so my concerns about Phase | and Phase Il also apply to Phase lll. | cannot
quantify how much each screening step made the problem progressively worse —it is
possible that using one screening step would have the same effect as using four screening
steps if they were using comparable criteria. However, that seems unlikely. Each of the
multiple screening methods has the potential to create a bias toward spurious correlations
(Type-l errors). This is true for the Phase | variables presented in Table 2-3 (landcover,
oestrid, and mosquito variables). Conversely, the fourth screening method used only in
Phase Il (and the latter half of Phase Ill) was the Bayesian Information Criterion (BIC), which
is more conservative than Akaike Information Criterion (AIC); i.e., it tends to favor models



with fewer variables. Rettie et al. favored AIC in Phase | (for landcover, oestrid, and
mosquito variables), but favored BIC in Phase Il when considering the mine-related
variables (presented in Table 2-4). They did not provide a detailed rationale for why they
should treat the mine-related variables differently and more conservatively than the other
variables.

Given my assumption that this is a study geared toward inference, the model
building process should have focused on testing a small number of a priori hypotheses,
while controlling for other important drivers of habitat selection. There is a large literature
on caribou habitat selection throughout their range that could have been used to guide the
model building process, plus the key addition of mine-related variables to test (i.e., draw
inference about) the effect of the mine on caribou behavior. Instead, the report of Rettie et
al. largely resembles a descriptive analysis consisting of data dredging and covariate
screening/model selection across multiple spatial scales.

Model Validation

Model evaluation and validation is a critical step in any analysis. Especially when overfitting
or spurious correlations are a concern, validating with out-of-sample data can alleviate
many concerns. Rettie et al. presented model validation metrics based on out-of-sample
data; however, their approach was focused narrowly on evaluating binary responses, which
is not always appropriate for iSSFs.

iISSFs are typically fit with conditional logistic regression; however, the true
underlying model that they assume is not actually conditional logistic regression. Rather,
by randomly sampling available steps, the analyst is actually using numerical integration to
estimate an integral in the likelihood of the iISSF (Michelot et al. 2024). Fitted iSSFs are
often evaluated/validated using approaches developed for binary data, but care must be
taken to understand how these metrics generalize to the iSSF. In this report, Rettie et al.
improperly used statistics applicable only to binary data to evaluate model performance.
Their results showed poor performance in an absolute sense, but they still claimed positive
results by asserting similarly poor performance of the fitted models in-sample and out-of-
sample. My opinion is that these metrics are an unreliable test of model validity.

Rettie et al. state that “overall performance of the top SSA models was assessed
using Rho?,q;.” They provide no further description of the method, the software used, or a
citation, so | cannot be sure exactly how this statistic was calculated and how it compares
with a standard R? or pseudo-R? statistic. Nevertheless, they stated that it ranged from 0 to
1, with values of 1 indicating better performance. Furthermore, they used four other



metrics that depend on the user defining a “cut-point”: percent correct classification
(PCC), sensitivity, specificity, and Kappa. No further detailis given in the report about how
the cut-point was chosen or exactly how it was used. However, in evaluating a binary
classifier, the model predictions are continuous probabilities between 0 and 1, but the
observed data is either 0 or 1. A cut-point is typically used to classify smaller probabilities
as Os and larger probabilities as 1s for the purposes of calculating PCC, sensitivity, and
specificity. | am not familiar with “Kappa”, reported by Rettie et al. to be “a measure of the
agreement between predicted and true values”, so | will not comment further on it.

Choosing a particular cut-point is a subjective decision (again, Rettie et al. do not
describe how they chose each different cut-point for each model). To avoid this, many
analysts choose a statistic called area under the curve (AUC), referring to the receiver-
operator characteristic curve, which is a plot of sensitivity vs. 1 minus specificity, for many
values (ranging between 0 to 1) of the cut-point. The AUC statistic is designed for binary
classifiers, but it has an intuitive interpretation for RSFs: it is the probability that a randomly
chosen used point has a higher RSF score than a randomly chosen available point. AUC is
not appropriate for iSSFs because those models are stratified; the generalization of AUC to
the stratified case is called concordance and is widely used to evaluate SSFs. The
measures of PCC, sensitivity, and specificity reported by Rettie et al. are conditional on the
cut-points, which | would assume were chosen to maximize at least one of those
quantities. If my assumption is correct, it suggests that this evaluation tends to be too
optimistic. Furthermore, the Os in this conditional logistic regression (the available steps)
are not data (they are sampled by the analyst) but are rather used to numerically estimate
an integral. Thus, specificity —in particular — does not evaluate data at all, and PCC and
sensitivity are still not motivated from first principles under this model.

Despite being generally inappropriate validation metrics, and despite my
assumption that they tend to be generally optimistic, the performance metrics also tend to
be low (Appendices: Tables C-1-C18; Tables E-1 — E-14). Rho?.4 values for the 8-h models
were as low as ~ 0.01 and as high as ~ 0.08 (Appendices: Tables C-1 — C-18). Rho?%. values
for the 1-h models were as low as ~ 0.02 and as high as ~ 0.15 (Appendices: Tables E-1 - E-
14). It’s unclear if these values are “bad” because of the lack of detail on how they are
calculated; sometimes pseudo-R?for the true generating model under a GLM (with
overdispersion) can be very low. There’s just not enough information to tell.

Furthermore, in discussing the low Rho?,q values, Rettie et al. stated, “This limited
explanation of behaviour is a consequence of analyses that appropriately restricts
available habitat to a plausible set of locations based on the movement time interval and
the movement patterns of individual animals,” (p. 80). | do not think this statement can be



substantiated. | think it’s more a consequence of the metric used to assess model fit,
combined with relatively poor fit. It is not generally true that goodness of fit statistics for an
iISSF should be low. They continue, “Little change in relative selective value arises when
observed short distance movement steps are matched with random short distance
movement steps originating at the same location — available and used locations have
similar attributes and selection at this scale is limited.” (p. 80). This statement is absolutely
nottrue. It is entirely possible in theory to have — and there are many published papers that
show - strong selection strengths over short movements.

For the other metrics, Rettie et al. stated that, “PCC is viewed as the most important
measure” (p. 43) and “model validation depends on the performance of the model for the
test data closely matching the performance of the train data,” (p. 45). | disagree that this is
a reasonable criterion for model validation. A very poorly fit model will perform poorly on
the in-sample and the out-of-sample data; that the in-sample performance is also poor
does not give me confidence in the model. In conclusion, | disagree with the choice of
metrics for model evaluation, but nonetheless, the metrics that were presented suggested
to me poor overall performance.

Movement Characterization

Rettie et al. devoted a section of the report to movement characterization. This section is
meant to directly address the concerns raised in the report by Poole et al. (2021) that
concluded the Ekati mine affects caribou movements. Due to the misunderstanding of the
distinction between SSF and iSSF, and due to the particular parameterization of what Rettie
et al. termed an “iSSF”, those models could not provide inference on changes in movement
patterns due to mine infrastructure. Despite this, Rettie et al. argued that their “iSSFs” were
“considered statistically more appropriate and stronger analyses for these data” (p. 30)
compared to the methods of Poole et al. (2021). | agree that an iSSF is an ideal model for
addressing these questions, but Rettie et al. did not parameterize their models properly to
achieve that goal. In fact, the models they fit are not iSSFs in many cases.

Rettie et al. did provide simple linear regressions of movement metrics (step length
and turn angle). Rettie et al. correctly noted that, “The simple relationship of caribou
movements to the proximity of mine infrastructure is confounded by habitat selection and
the spatial distribution of natural environmental features.” However, they then incorrectly
asserted that, “These relationships were explicitly addressed through iSSAs as described in
Section 2.8.” (Section 2.9, p. 29). The structure of their models did not, in any way, address
the effect of habitat selection on movement (as | covered in detail in the section,
“Misunderstood Models”). To accomplish this, they would have needed to include



interactions between their movement variables (log of step length and cosine of turn angle)
and the mine variables, which they did not. This was a missed opportunity to draw
inference directly related to their stated objectives (objectives 1, 6, and 7) while controlling
for the effects of habitat selection that they acknowledged confound the observed
movement statistics. This makes direct analysis of step lengths and turn angles tricky, but |
would generally accept this as a descriptive exercise. Drawing inference from these
descriptive analyses is unreliable, notwithstanding my objections about pseudoreplication.

Pseudoreplication

Data used in this study were collected as repeated measures of individual caribou.
The ecological and wildlife literature are full of examples of consistent individual variation
in habitat selection (Leclerc et al. 2016) and cautions about the importance of accounting
for individual-level autocorrelation using mixed effects models (Gillies et al. 2006; Muff et
al. 2020). There are other approaches to accounting for individual variation in population
estimates, such as a two-step modeling procedure (Craiu et al. 2011). Rettie et al. seemed
to have ignored this problem. They did not address it at all in Phase | and Phase Il. In Phase
lll, they used data reduction (Section 2.8.8.1) to balance the sample by thinning any
individual dataset with more than the median locations (p. 27). Data reduction reduces
statistical power, increasing the probability of a Type-Il error. More simply, many methods
exist that would allow an analyst to fit an iSSF with random slopes for balanced population-
level inference without sacrificing information (Craiu et al. 2011; Klappstein et al. 2024,
Muff et al. 2020). Additionally, the ordinary linear regressions that Rettie et al. presented to
characterize movement metrics did not account for individual identity. Using a standard
linear mixed modelin this context would be absolutely expected for valid inference.

Minor Comments

These comments are minor relative to my previous comments. In my opinion, none of the
following are terribly problematic on their own, but taken together and combined with my
major concerns above, they reflect on an unreliable analysis.

e Section 2.4.2, p. 9: the seasonal UD analyses seem mostly unrelated to the
objectives. However, it seems like Rettie et al. did very little to address the
autocorrelation in the data. While they did subset the data to one location per
animal per day, | would still expect autocorrelation to be strong at the daily scale in
animals that have such large ranges over the year. A better estimate of the UD could
have been obtained by fitting and AKDE home range that accounts for the



autocorrelation in the data (Fleming et al. 2015; Silva et al. 2021). This would have
required no data thinning.

Section 2.5.3, p. 12: 1 don’t like the data-driven process to identify the spatial
resolution of covariates. Yes, itis common in the literature, but itis inherently
descriptive, as | have mentioned elsewhere. Identifying the scale at which caribou
select a particular land cover type was not the objective here, and this was an
unnecessary step when the focus should have been on the effect of the mine
variables.

Section 2.8.1.1, p. 19: the authors stated, “locations with prior steps of 0 m length
were removed.” Steps of exactly 0 length are typically impossible given the precision
of GPS collars is no better than a few meters; instead, they typically arise because
of something like duplicate fixes (by the collar) or data duplication during the data
management process. However, this is typically handled during data cleaning and
prior to creating steps. That these likely errors persisted through the process of
creating steps might suggest that the data cleaning protocol was not thorough. The
data cleaning process indicated that, “Data were then screened to remove duplicate
locations...” (p. 8), but this doesn’t seem to have been thorough.

Section 2.8.1.1, p. 19: five available steps per used step is low. The available steps
are used for numerical estimation of an integral (Michelot et al. 2024), and few
available steps make for very coarse estimation. A small number of available steps
also leads to low resolution in model evaluation (e.g., using an appropriate statistic
like concordance).

Section 2.8.3, p. 20: there’s no description of the rationale for using boosted
regression trees at any point. This is not a standard approach for fitting iSSFs, and
while it should generally work with any binary classifier, the true model of interest is
not binary.

Section 2.8.3, p. 21: “In preliminary analyses, collinearity was initially detected, with
some VIF values approaching 20, but when proportional cover by water derived from
landcover layers was replaced with proportion waterbody area derived from CanVec
Series - Hydrographic Features (Natural Resources Canada 2019), collinearity (VIF)
was greatly reduced.” This is vague and concerning. So is the later treatment of VIF <
5 as anon-problem and the non-reporting of which variables showed high
collinearity with the other variables in the model.

Section 2.8.5, p. 25: “By definition, the top ranked model from the SSA for each sex
by season are the Step Selection Functions (SSFs).” By what definition? There is no
general consensus that the top-ranked model from an SSA is called an SSF.



e Section 2.8.6, p. 27: “By definition, the top ranked models from the iSSA for each sex
by season are the integrated Step Selection Functions (iISSFs).” Same comment as
above. This is not convention or definition.

e Table 2-5: Why not combine multiple mine-related variables in a single model? And
why not consider interactions between variables? E.g., a reasonable hypothesis is
that caribou avoid mine roads more strongly when they are close to the mine itself.
That calls for an interaction between the mine and mine roads covariates.

e Table 3-2, Table 3-3, p. 33: | don’t get a sense of how many individuals were removed
or the effect of removing individuals on the resulting inference.

e Table 3-9, p. 40: | would have liked to have seen all the VIFs.

e Section 3.6: reporting of quadratic effects (e.g., p. 42) is poor. They are presented as
an independent result from the linear effect for the same term. In fact, using a linear
and quadratic term actually parameterizes a parabola, rather than a line. These two
terms represent a basis expansion, meaning that they are not independent and
shouldn’t be interpreted as independent effects. The predictor is still a single
dimension, but there are two parameters governing that predictor’s relationship with
the response variable.

e Section 3.8, p. 46: “Phase 2 iSSFs provide a better fit to data... than the Phase 1
SSFs...” This is somewhat obvious. By taking Phase | models and offering a model
selection routine a chance to add covariates, the fit can only improve.

e Section 3.8, p. 47: “Though not part of formal analyses...” Is this stating that figures
3-6 — 3-19 are not part of the analysis? This is the majority of the results figures.

e Section 4, p. 79: Rettie et al. stated that the covariates for herd, season, sex, and
year are “best addressed with separate sets of models.” However, they note that this
would result in 252 potential model sets, “an unmanageable number.” | agree that
this is far too many model sets. This further highlights the descriptive and data-
dredging tendencies of this analysis. There are pros and cons to representing these
factors as separate models vs. interactions in the main model, and those pros and
cons are not mentioned anywhere.
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