

ABUNDANCE AND DISTRIBUTION  
OF THE QUEEN MAUD GULF  
CARIBOU HERD, 1986-98.

A. GUNN

B. FOURNIER

and

J. NISHI

DEPARTMENT OF RESOURCES, WILDLIFE AND  
ECONOMIC DEVELOPMENT

GOVERNMENT OF THE NORTHWEST TERRITORIES  
YELLOWKNIFE, NWT

2000

The research documented in this report was carried out prior to the creation of Nunavut. Final report preparation was funded by the Government of Nunavut.



## ABSTRACT

It was uncertain as to whether the barren-ground caribou (*Rangifer tarandus groenlandicus*) wintering around Bathurst Inlet, Nunavut, in the late 1990s belonged to the Bathurst or another herd, although the commercial tags were assigned to the Bathurst herd. To determine the herd identity, we fitted five cows east of Bathurst Inlet, Nunavut, with satellite collars in April 1996. This report summarizes the seasonal distribution of the five satellite-collared cows from April 1996 to June 1998. We also report aerial surveys to delimit calving distribution in 1986 and 1996. The collared cows calved along the Queen Maud Gulf in 1996, 1997 and 1998, and spent the summers mostly in the Queen Maud Gulf Migratory Bird Sanctuary. The fall and spring migration of the herd is through and south of the Thelon Game Sanctuary, and the winter range extends into the Northwest Territories where the tundra merges with the taiga. In 1986 we estimated that 11 265 caribou were on the calving grounds, and in 1996 we estimated 83 134 caribou, which extrapolates to about 200 000 caribou in the herd that is seasonally hunted by people from Gjoa Haven, Umingmaktok, Cambridge Bay and Lutsel K'e. The Queen Maud Gulf herd's traditional calving ground overlaps with the Bathurst herd's traditional (but not current) calving grounds, the southern wintering ranges overlap with the ranges of the Beverly and Bathurst herds, and the northern winter ranges overlap with the Dolphin and Union herd's mainland winter ranges. In 1996, the Queen Maud Gulf caribou herd was the fourth largest herd of barren-ground caribou shared between the Northwest Territories and Nunavut.



**TABLE OF CONTENTS**

|                                                                                                                                            |     |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ABSTRACT .....                                                                                                                             | ii  |
| TABLE OF CONTENTS .....                                                                                                                    | iii |
| LIST OF FIGURES.....                                                                                                                       | v   |
| LIST OF TABLES.....                                                                                                                        | v   |
| INTRODUCTION.....                                                                                                                          | 1   |
| METHODS .....                                                                                                                              | 4   |
| RESULTS.....                                                                                                                               | 7   |
| DISCUSSION.....                                                                                                                            | 22  |
| ACKNOWLEDGEMENTS .....                                                                                                                     | 38  |
| PERSONAL COMMUNICATIONS .....                                                                                                              | 39  |
| LITERATURE CITED .....                                                                                                                     | 40  |
| APPENDIX A. Caribou observations and transect areas for June 1986 and 1996 aerial survey, Queen Maud Gulf area, Nunavut/NWT.....           | 43  |
| APPENDIX B. Location accuracy associated with quality index codes for satellite transmitted locations. ....                                | 45  |
| APPENDIX C. Maps of seasonal movements for individual collared caribou cows between 1996 and 1998, Queen Maud Gulf area, Nunavut/NWT. .... | 48  |
| APPENDIX D. Daily rate of travel for individual satellite collared caribou cows in the Queen Maud Gulf area, 1996-98. ....                 | 53  |
| APPENDIX E. Straight-line distances travelled from calving for cows #82, #84, #85. ....                                                    | 58  |
| APPENDIX F. Satellite location data for the Queen Maud Gulf caribou. ....                                                                  | 59  |
| APPENDIX G. Compilation of historical information on caribou, Adelaide Peninsula and Queen Maud Gulf area.....                             | 73  |



## LIST OF FIGURES

|                                                                                                                                                                                               |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1. Study Area for the satellite-collared Queen Maud Gulf caribou cows.....                                                                                                             | 3  |
| Figure 2. Flightlines and locations near Bathurst Inlet where caribou were fitted with satellite transmitters, April 1996.....                                                                | 8  |
| Figure 3. Locations during calving in June 1996 and 1997 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.....                                          | 12 |
| Figure 4. Locations in October 1996 and 1997 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.....                                                      | 13 |
| Figure 5. Locations in winter 1997 and 1998 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.....                                                       | 14 |
| Figure 6. Locations in summer 1996 and 1997 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.....                                                       | 15 |
| Figure 7. Flightlines and cow-calf observations during an aerial survey of the calving grounds for the Queen Maud Gulf herd, June 1986.....                                                   | 20 |
| Figure 8. Flightlines and cow-calf observations during an aerial survey of the calving grounds for the Queen Maud Gulf herd, 12-13 June 1996.....                                             | 21 |
| Figure 9. Calving grounds for the Queen Maud Gulf herd 1986-96 based on aerial surveys and satellite-collared cows.....                                                                       | 23 |
| Figure 10. Calving grounds for the Bathurst herd 1966-97 based on aerial surveys and satellite-collared cows (Sutherland and Gunn 1996).....                                                  | 26 |
| Figure 11. Distribution of satellite-collared cows from the Bathurst and Queen Maud Gulf herds in October 1996 and 1997.....                                                                  | 28 |
| Figure 12. Locations of collared cows from the Bathurst herd, Queen Maud Gulf herd and Beverly herd on 8 December 1997.....                                                                   | 29 |
| Figure 13. Calving grounds for the Queen Maud Gulf herd (1986-96), the Bathurst herd (1966-97) and Beverly herd (1957-94) based on aerial surveys and satellite-collared cows.....            | 30 |
| Figure 14. Superimposed annual calving grounds delimited during unsystematic and systematic reconnaissance surveys on the Beverly calving grounds, 1957-1994 (Gunn and Sutherland 1997b)..... | 31 |



|                                                                                                                                                                   |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 15. Queen Maud Gulf caribou herd range between 1996 and 1998, the Queen Maud Gulf Migratory Bird Sanctuary and the Thelon Game Sanctuary, Nunavut/NWT..... | 32 |
| Figure 16. Potential mines on the seasonal ranges (defined by satellite collar locations) of the Queen Maud Gulf caribou herd, 1996-98.....                       | 35 |



**LIST OF TABLES**

|                                                                                                                                                                                                                       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1. Dates of peaks in mean total annual distance (km) moved by satellite-collared Queen Maud Gulf cows based on straight-line distances averaged over 5-day periods, 1996-98.....                                | 9  |
| Table 2. Dates, mean daily rates of movements and distance moved for satellite-collared caribou during spring migration, calving, summer, fall, rut and winter, Queen Maud Gulf area, Nunavut/NWT, 1996 and 1997..... | 10 |
| Table 3. Mean monthly distances (km $\pm$ S.E.) traveled by Queen Maud Gulf collared cows, 1996-98.....                                                                                                               | 16 |
| Table 4. Distance between calving locations, 1996 and 1997, for satellite collared Queen Maud Gulf caribou.....                                                                                                       | 17 |
| Table 5. Mean distance between satellite-collared cows during the rut and other seasons during the year.....                                                                                                          | 18 |
| Table 6. Analysis of data from transect surveys, Queen Maud Gulf area, NWT, June 1986 and 1996.....                                                                                                                   | 19 |



## INTRODUCTION

In some years barren-ground caribou (*Rangifer tarandus groenlandicus*) winter in the central Arctic mainland area of Bathurst Inlet and Kent Peninsula (Kelsall 1968, Gunn *et al.* 1997a). However, in the 1990s, arctic-island caribou from Victoria Island (Dolphin and Union herd) have progressively replaced those barren-ground caribou that previously wintered on the Kent Peninsula (Figure 1) and south of Elu Inlet toward Umingmaktok (Gunn *et al.* 1997a). Because of a concern with the harvest of the Dolphin and Union herd, the Kitikmeot Hunters and Trappers Association recommended that commercial harvest of arctic-island caribou be discontinued (KHTA Annual General Meeting, July 1994). Consequently, hunters with commercial caribou tags for the Cambridge Bay meat plant (Kitikmeot Foods Ltd.) were obligated to travel further south to hunt barren-ground caribou under the commercial quota assigned to the Bathurst herd. The critical assumption has been that barren-ground caribou wintering on the mainland between Bathurst Inlet and the Ellice River were a tundra wintering segment of the Bathurst herd.

However, hunters have suggested that the caribou wintering around Bathurst Inlet travel further east to calve. In addition, although 1995 spring snow melt and caribou migration were late, in June we found cows and newborn calves moving east toward Queen Maud Gulf at the same time that we saw caribou calving west of Bathurst Inlet (Gunn 1996).

Based on an extensive survey between 4 and 11 May 1983 to determine pre-calving distribution and abundance of caribou in the Queen Maud Gulf area, Heard *et al.* (1987) suggested the likely existence of a herd distinct from the Bathurst herd. The authors suggested that the  $33\,000 \pm 5100$  caribou estimated between the Perry River and Adelaide Peninsula were either a separate population or a segment of the Bathurst herd.

We suspected that the caribou were a separate herd based on finding a calving ground west of Adelaide Peninsula during an aerial survey of Adelaide Peninsula and east of Chantrey Inlet in June 1986 (this report). However we lacked confirmation or an understanding of the

seasonal movements, which left unresolved the management issue of herd identity of the caribou wintering east of Bathurst Inlet and whether we should assign the commercial harvest to another herd or the Bathurst herd. Failure to determine which herd the caribou belong to could lead to loss of opportunities for hunters from Umingmaktok and Cambridge Bay or changes in population size remaining undetected.

Mining exploration is underway east and south of Bathurst Inlet and baseline studies describe seasonal changes in caribou numbers (Ross 1997, Rescan Environmental Services Ltd 1999). The herd designation of those caribou will be necessary to assess implications of any development of the properties.

Conventionally, caribou populations (herds) are delineated on the basis of the return of pregnant cows to a traditional calving ground (Thomas 1969). Monitoring movements of caribou that winter east of Bathurst Inlet would allow us to determine which calving grounds they use and to compare their rutting distribution to the Bathurst herd. Using calving distribution to define herds would be strengthened if we knew that cows that calved together also bred together. As we were unsure as to the extent of the movements, we used satellite collars. Satellite telemetry has unlimited range and allows us to monitor movements with no disturbance.

Our first objective was to determine seasonal movements for caribou cows east of Bathurst Inlet using satellite telemetry. Our second objective was to determine to which herd the caribou wintering east of Bathurst Inlet belonged (based on their return to a calving ground). As well as describing the results of this research in the report, we have also included other information that we have compiled on the caribou east of Bathurst Inlet.

## METHODS

### **Satellite-collaring in April 1996**

We used five refurbished ST 10 collars (Telonics Inc. Arizona, U.S.A.) that, complete with battery and VHF transmitter, weighed about 1200g. The transmitter duty cycles were programmed to transmit 6h on and 114h off during the year.

We based our field operations out of Umingmaktok and searched for caribou in the vicinity of Bathurst Inlet using an Aviat A-1 Husky. From the air, we scrutinized groups for adult female barren-ground caribou with hard antlers accompanied by short yearlings. We distinguished between barren-ground caribou and arctic-island caribou based on overall body size (arctic-island caribou are noticeably smaller), configuration of the head (length of the muzzle relative to overall head length is shorter in arctic-island caribou), and pelage colour (arctic-island caribou are conspicuously lighter with a light brown back and white flanks, belly, and lower legs). Upon locating suitable groups of caribou, we radioed the location back to a helicopter-based capture crew (Outbound Aviation Ltd). The two-person capture crew (pilot and net-gunner) used a Hughes 500 and fired either a hand-held or skid-mounted net gun to capture caribou cows. The helicopter landed close to the cow in the net after a successful shot and the net-gunner used a blindfold on the cow while he removed the net and fitted the collar. To minimize handling time, we only took fecal samples and took no body measurements.

In May 1998, we retrieved transmitters from the three cows that had died and recaptured the other two cows to remove the collars. We took skin biopsy samples from under the collars, fixed them in buffered formalin and sent them to the Western College of Veterinary Medicine for pathological examination.

### **Calving Distribution and Abundance in June 1986**

In June 1986, we used a fixed-wing Helio-Courier aircraft on wheel skis based at Gjoa Haven. Survey altitude was 150 m above ground level, airspeed 160 km/h and the transect width 1.0 km on either side of the aircraft. To cover the largest area possible with our flying time, we opted not to do reconnaissance but instead systematically covered the area

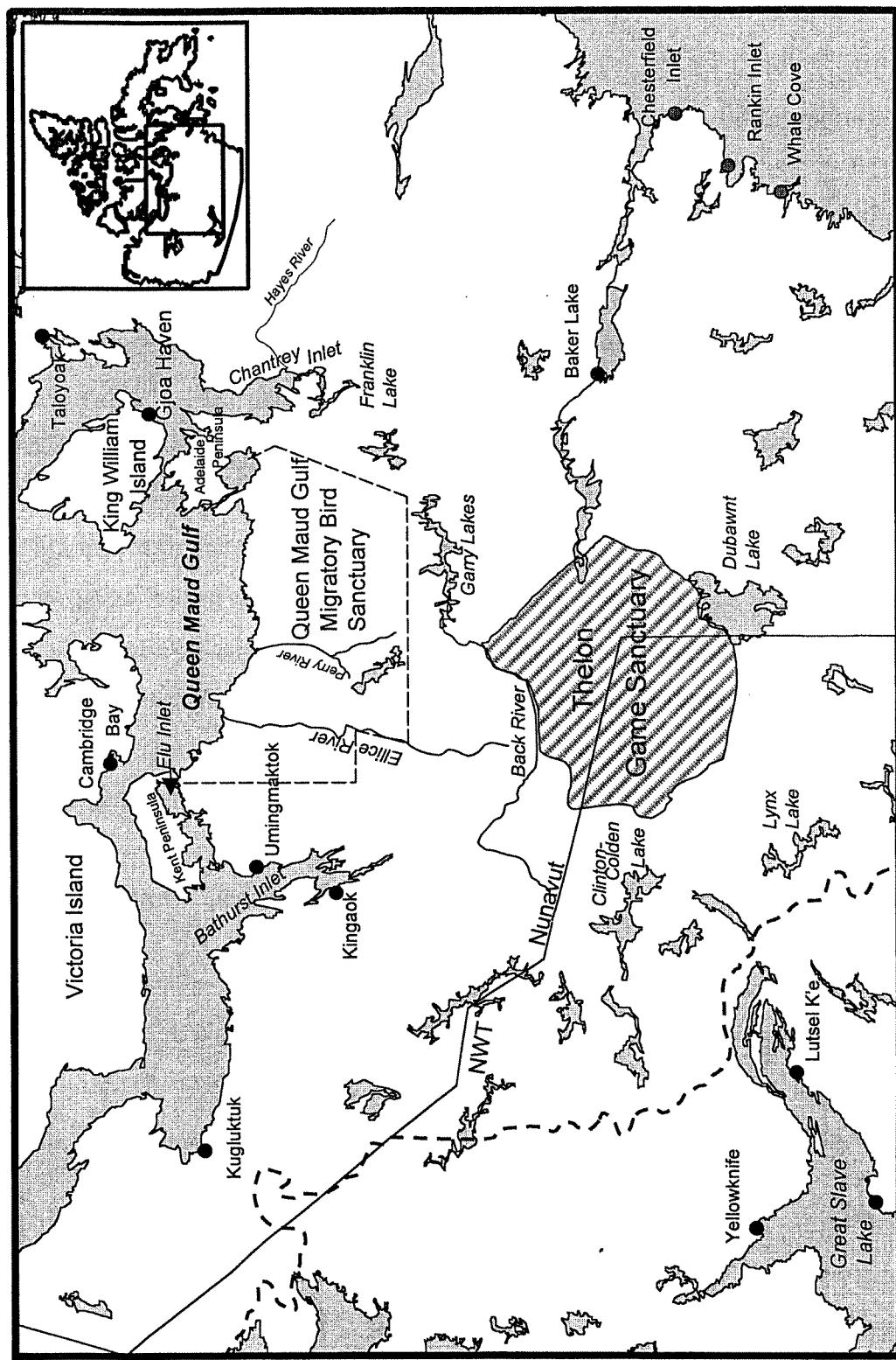



Figure 1. Study area for the satellite-collared Queen Maud Gulf caribou cows.

(Stratum II) west of Adelaide Peninsula using transects 9.6 km apart (20% cover) between 6 and 8 June 1986. We then resurveyed this area as Stratum III at a higher coverage (27%) between 11 and 12 June 1986 to determine the extent of calving and estimate abundance.

### **Calving Distribution and Abundance in June 1996**

In June 1996 we flew systematic reconnaissance as part of the survey for the Bathurst herd calving ground (Gunn *et al.* 1997b). We used a fixed-wing Helio-Courier aircraft on tundra tires based at a field camp east of Bathurst Inlet. Survey altitude was 120 m above ground level, airspeed 160 km/h and the transect width 0.8 km on either side of the aircraft. We flew four east-west transects as far as the Simpson River between 6 and 8 June 1996 to determine if there was a discontinuity in calving distribution between east and west of Bathurst Inlet. We then flew systematic transects between 12 and 13 June 1996 to determine the eastern extent of Queen Maud Gulf calving and to estimate abundance. Six east - west transects were flown between 106° and 98° W. Transect length was variable and ranged from 49 km to 352 km. Transect lines 3, 4 and 5 were flown over 2 days.

### **Data Analyses**

We received location data from Service Argos and transferred them into a database (DBase3). We used Dbase5 to calculate distances between locations and used Microsoft Excel to graph rates of movement. We plotted location data and examined seasonal range use using SPANS software. Two collars, #80 and #83, transmitted intermittently, and the data for these two cows were not included in most analyses.

We used calendar months for most analyses for convenience of standardised time periods for comparisons. However, we recognize that ecological processes have their own seasonality independent of calendar months so we graphed mean daily rates of movement to define seasons (precalving, calving, rutting). We used the date of increased movement during May or June as the beginning of pre-calving and summed the minimum straight-line distances moved from this date to the assumed calving date (period of minimal change in daily movement). The increase in mean daily movements was the beginning of post-calving,

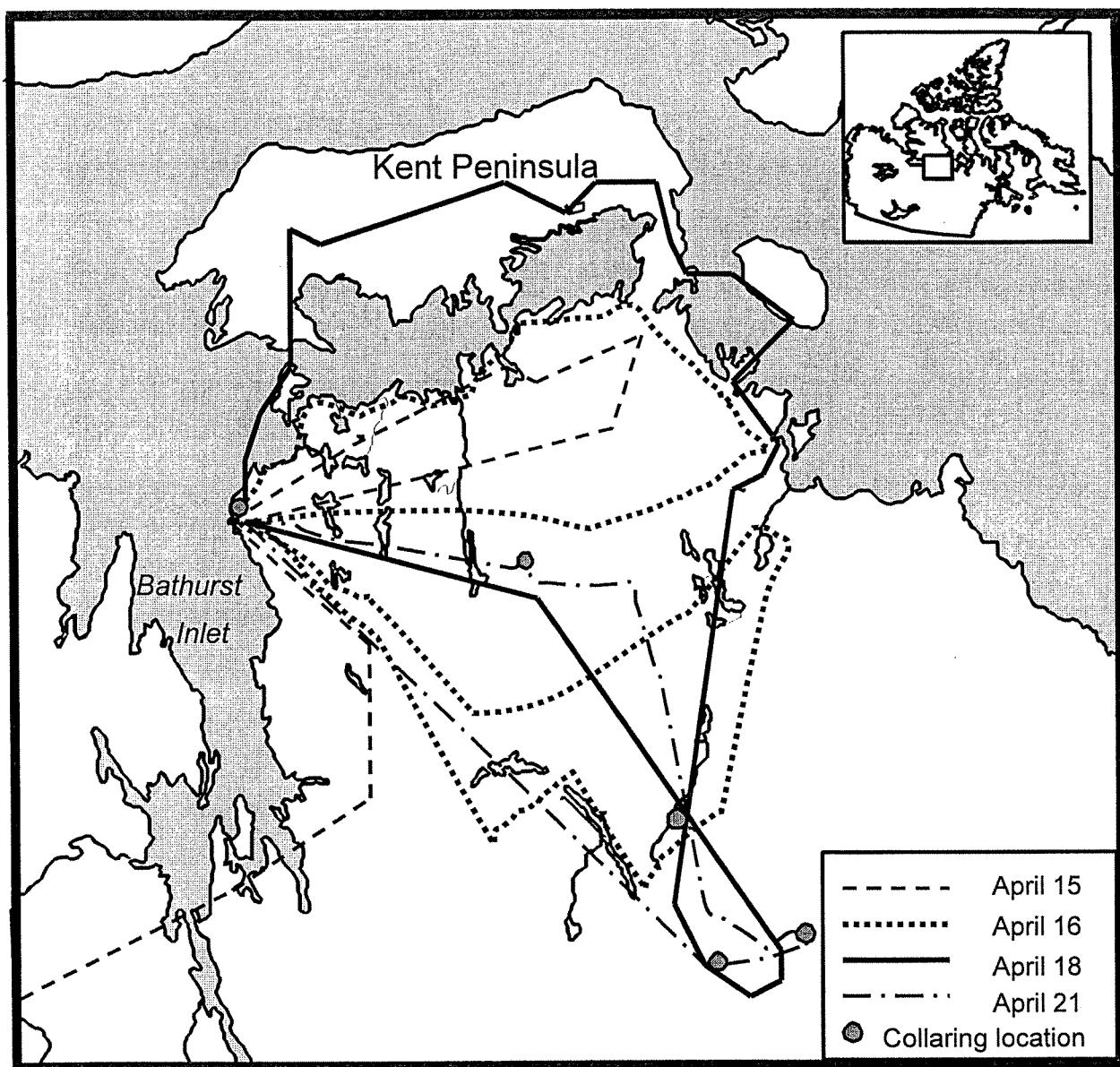
which we then arbitrarily terminated at the end of July. We mapped August, September and October movements and used the period of minimal rate of movement during winter months to map the winter distribution of the cows (late November to early April).

Location data were not used for analyses if the location class (quality index) was A or B (Appendix B) because of its uncertainty. We used quality indices of 0 to 3 for our analyses. We calculated minimum (straight-line) distances moved between locations at 5-day intervals. Sigmastat was used for the comparisons of total distance moved monthly between individuals and between years (ANOVA). This resulted in unequal variance so the data was transformed to  $\log_{10}$  for analysis. We also compared mean distances between collared cows during different seasons to determine if cows were closer together during calving and rutting.

Distances traveled for three cows, starting from calving locations and continuing as they traveled throughout the seasons, were measured and plotted to compare the annual pattern of movement.

We used Jolly's (1969) Method 2 to calculate a population estimate from the numbers of caribou (excluding calves) counted on transect (Appendix A).

## RESULTS


### **Capture and Collaring**

We caught and collared 5 adult cows on 16 and 21 April 1996 (Figure 2). We found arctic-island caribou (Dolphin and Union herd) on Kent Peninsula and in the vicinity of Umingmaktok. Only when we were as far east as 105°W did we find barren-ground caribou in large numbers moving northeast in groups of 10s and 100s. The caribou were mostly antlered cows, yearlings and juveniles. Mean chase time was  $60 \pm 8.7$  sec (SE) and handling time averaged  $7 \pm 0.5$  min (SE). We observed one injury to a caribou during the capture – cow #83 suffered a superficial cut to the perianal area.

Location data were received continuously for three of the five collared cows from April 1996 to May 1998. Locations were not received consistently every 5 days (Appendices B and E) and the location's accuracy varied (Appendix B). Location class A and B were too unreliable to be used. Two transmitters (#84 and #85) had only 11% and 6% of their total locations as A or B. By comparison, the other three transmitters had 21-31% of their locations as unusable A or B.

### **Seasonal Movements and Distribution**

We have two consecutive years of data on seasonal movements for three of the five satellite-collared cows and those three cows annually had similar seasonal patterns of movement rates and traveled similar distances (Appendices C,D and E). The three cows traveled  $1692 \pm 266$  km (SE) in 1996 and  $2001 \pm 68$  km (SE) in 1997. The timing of their annual movements (Table 1) varied except for immediately before the rut, based on spikes in the daily rates of travel (Appendix D). The rate of movement during migrations was 3 - 4 times the rate of movement during winter. The maximum distances travelled between calving and furthest fall locations are 380-660 km (Table 2). In winter, cow #84 travelled furthest south from her calving area (Figures 3, 4 and 5) and in spring she had the fastest rate of travel (Table 2).

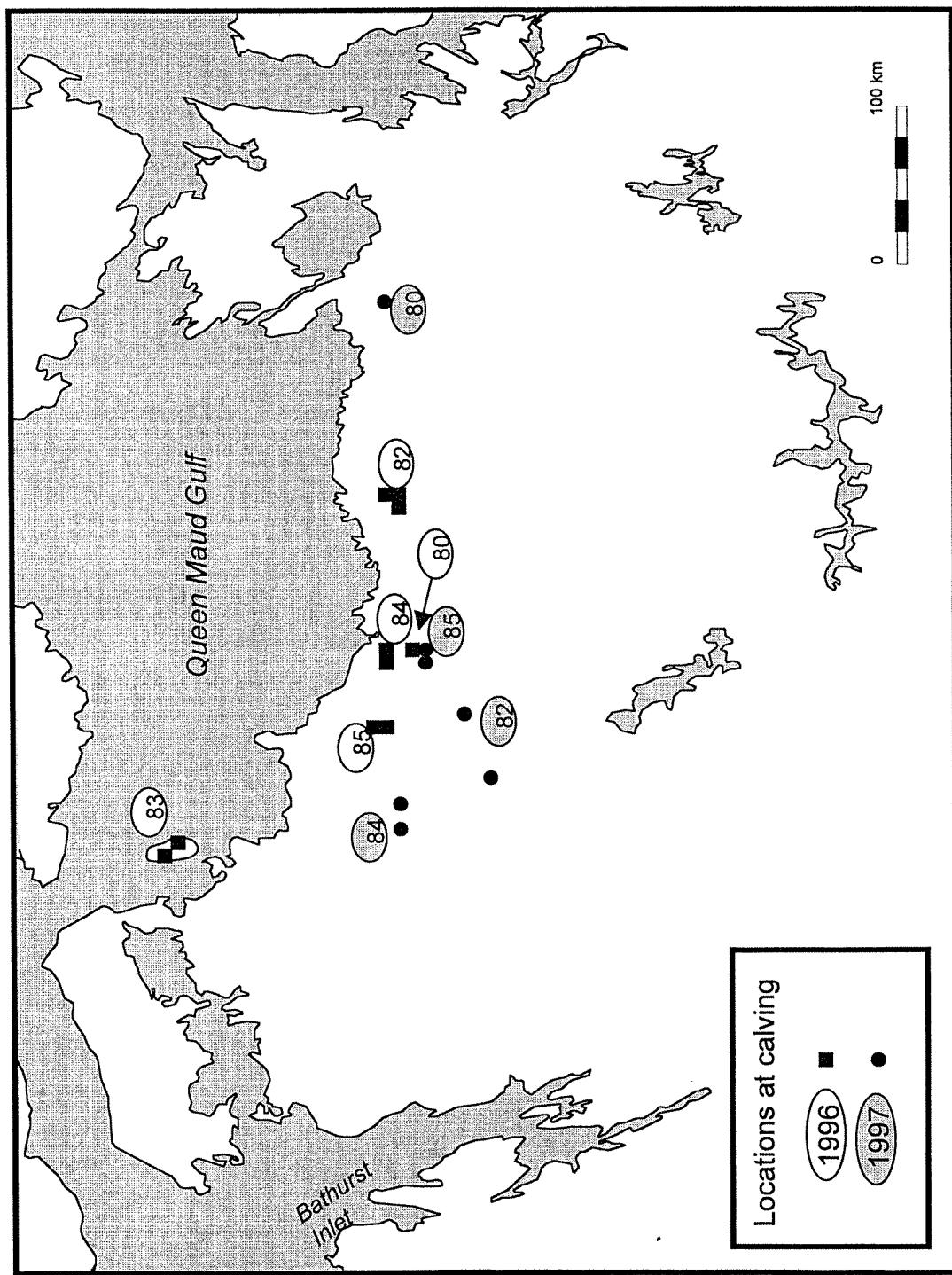


**Figure 2. Flightlines and locations near Bathurst Inlet where caribou were fitted with satellite transmitters, April 1996.**

**Table 1. Dates of peaks in mean total annual distance (km) moved by satellite-collared Queen Maud Gulf cows based on straight-line distances averaged over 5-day periods, 1996-98.**

| Mean daily rates | Pre-rut |       | Summer  |           | Spring migration |             |        |
|------------------|---------|-------|---------|-----------|------------------|-------------|--------|
|                  | 1996    | 1997  | 1996    | 1997      | 1996             | 1997        | 1998   |
| #82              | 4 Oct   | 9 Oct | 10 July | 5 July    | 26 May           | 17 May      | 27 May |
| #84              | 3 Oct   | 8 Oct | 15 July | 5-15 July | 1 June           | 16-26 April | 12 May |
| #85              | 3 Oct   | 8 Oct | 5 July  | 25 July   | 26 April         | 6 May       | 28 Mar |

The collared cows concentrated along the coast of Queen Maud Gulf within the Migratory Bird Sanctuary at calving (Figure 3) and dispersed inland during summer (Figure 6). By the time of the rut in October, the cows had traveled south and were within or in the vicinity of the Thelon Game Sanctuary (Figures 1 and 4). The cows moved northwest after the rut in 1996 to winter on the barrens between Clinton-Colden Lake and the south end of Bathurst Inlet, northwest of the Thelon Game Sanctuary (Figure 5). During the following winter, the cows were further southeast than in 1996/97 and were either within or south of the Thelon Game Sanctuary and as far as the treeline south of Lynx Lake (Figure 5).


We inferred time of calving during June when the mean daily rate of movement was lowest (Table 2) and was preceded by at least a twofold reduction from the previous 5-day period (Appendix D).

**Table 2. Dates, mean daily rates of movements and distance moved for satellite-collared caribou during spring migration, calving, summer, fall, rut and winter, Queen Maud Gulf area, Nunavut/NWT, 1996 and 1997.**

|               | Dates                     | No. days | Mean rate of movement $\pm$ SD (km/day) | Distance moved (km) |
|---------------|---------------------------|----------|-----------------------------------------|---------------------|
| <b>Season</b> | <b>cow #82</b>            |          |                                         |                     |
| spring        | Apr 22 – Jun 04 1996      | 44       | 6.6 $\pm$ 1.1                           | 315.0               |
|               | Apr 06 – Jun 05 1997      | 61       | 5.1 $\pm$ 2.4                           | 323.5               |
|               | Mar 27 – May 27 1998      | 62       | 9.6 $\pm$ 7.4                           | 707.5               |
| calving       | Jun 05 – Jun 16 1996      | 12       | 1.8 $\pm$ 0.1                           | 9.0                 |
|               | Jun 05 – Jun 15 1997      | 11       | 2.3 $\pm$ 1.5                           | 18.3                |
| post-calving  | July 1 – 30 1996          | 30       | 18.8 $\pm$ 2.8                          | 471.2               |
|               | July 1 – 31 1997          | 31       | 15.7 $\pm$ 5.9                          | 460.7               |
| summer        | Aug 1 – 29 1996           | 29       | 2.9 $\pm$ 0.9                           | 89.8                |
|               | Aug 1 – 30 1997           | 30       | 4.9 $\pm$ 1.9                           | 152.4               |
| September     | Sep 1- 28 1996            | 28       | 8.8 $\pm$ 1.2                           | 220.9               |
|               | Sep 1 – 29 1997           | 29       | 5.2 $\pm$ 1.9                           | 162.2               |
| October (rut) | Oct 1-28 1996             | 28       | 13.0 $\pm$ 2.8                          | 364.8               |
|               | Oct 1-28 1997             | 28       | 13.0 $\pm$ 4.4                          | 438.2               |
| winter        | Nov 23 1996 – Apr 06 1997 | 135      | 2.6 $\pm$ 1.3                           | 388.5               |
|               | Nov 22 1997 – Mar 07 1998 | 106      | 3.2 $\pm$ 2.5                           | 377.3               |
| <b>Season</b> | <b>cow #83</b>            |          |                                         |                     |
| spring        | May 16 – Jun 10 1996      | 56       | 7.1 $\pm$ 5.7                           | 185.4               |
| calving       | Jun 15 – Jun 30 1996      | 16       | 1.4 $\pm$ 0.4                           | 22.9                |
| <b>Season</b> | <b>cow #84</b>            |          |                                         |                     |
| spring        | Apr 21 – May 26 1996      | 36       | 7.9 $\pm$ 4.3                           | 316.7               |
|               | Apr 16 – Jun 05 1997      | 51       | 8.3 $\pm$ 3.6                           | 480.7               |
|               | Apr 16 – May 31 1998      | 46       | 13.2 $\pm$ 10.2                         | 608.6               |
| calving       | Jun 05 – Jun 15 1996      | 11       | 1.5 $\pm$ 0.1                           | 14.9                |
|               | Jun 10 – Jun 20 1997      | 11       | 2.3 $\pm$ 0.6                           | 22.4                |
| post-calving  | July 1 – 30 1996          | 30       | 9.8 $\pm$ 3.4                           | 295.1               |
|               | July 1 – 30 1997          | 30       | 13.4 $\pm$ 1.6                          | 493.8               |
| summer        | Aug 1 – 29 1996           | 29       | 10.5 $\pm$ 3.4                          | 177.1               |
|               | Aug 1 – 24 1997           | 24       | 4.2 $\pm$ 2.8                           | 83.8                |
| September     | Sep 1- 28 1996            | 28       | 7.1 $\pm$ 2.4                           | 214.3               |
|               | Sep 1 – 28 1997           | 28       | 10.9 $\pm$ 2.9                          | 328.6               |
| October (rut) | Oct 1-23 1996             | 23       | 17.8 $\pm$ 3.0                          | 496.8               |
|               | Oct 1-30 1997             | 30       | 14.8 $\pm$ 3.2                          | 442.8               |
| winter        | Nov 22 1996 – Apr 11 1997 | 141      | 2.1 $\pm$ 1.2                           | 287.5               |
|               | Nov 27 1997 – Apr 11 1998 | 136      | 3.1 $\pm$ 1.9                           | 389.5               |

**Table 2 (cont).**

|               | Dates                     | No. days | Mean rate of movement $\pm$ SD (km/day) | Distance moved (km) |
|---------------|---------------------------|----------|-----------------------------------------|---------------------|
| Season        | cow #85                   |          |                                         |                     |
| spring        | Apr 16 – May 26 1996      | 40       | 5.2 $\pm$ 1.4                           | 209.8               |
|               | Apr 16 – May 31 1997      | 45       | 5.1 $\pm$ 1.0                           | 254.4               |
|               | Mar 12 – May 26 1996      | 76       | 9.1 $\pm$ 9.1                           | 657.7               |
| calving       | Jun 05 – Jun 20 1996      | 16       | 1.8 $\pm$ 0.9                           | 23.7                |
|               | Jun 05 – Jun 15 1997      | 11       | 1.6 $\pm$ 0.8                           | 20.4                |
| post-calving  | July 1 – 30 1996          | 30       | 17.5 $\pm$ 3.8                          | 525.4               |
|               | July 1 – 31 1997          | 31       | 14.3 $\pm$ 1.7                          | 428.2               |
| summer        | Aug 1 – 29 1996           | 29       | 5.9 $\pm$ 2.9                           | 177.1               |
|               | Aug 1 – 29 1997           | 29       | 5.1 $\pm$ 0.9                           | 162.8               |
| September     | Sep 1- 28 1996            | 28       | 6.5 $\pm$ 1.9                           | 14.9                |
|               | Sep 1 – 28 1997           | 28       | 8.5 $\pm$ 2.8                           | 22.4                |
| October (rut) | Oct 1-28 1996             | 28       | 15.8 $\pm$ 4.7                          | 472.6               |
|               | Oct 1-28 1997             | 28       | 16.5 $\pm$ 4.1                          | 373.1               |
| winter        | Nov 22 1996 – Apr 11 1997 | 141      | 3.0 $\pm$ 1.6                           | 432.7               |
|               | Nov 27 1997 – Mar 22 1998 | 116      | 2.8 $\pm$ 2.0                           | 308.8               |



**Figure 3. Locations during calving in June 1996 and 1997 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.**

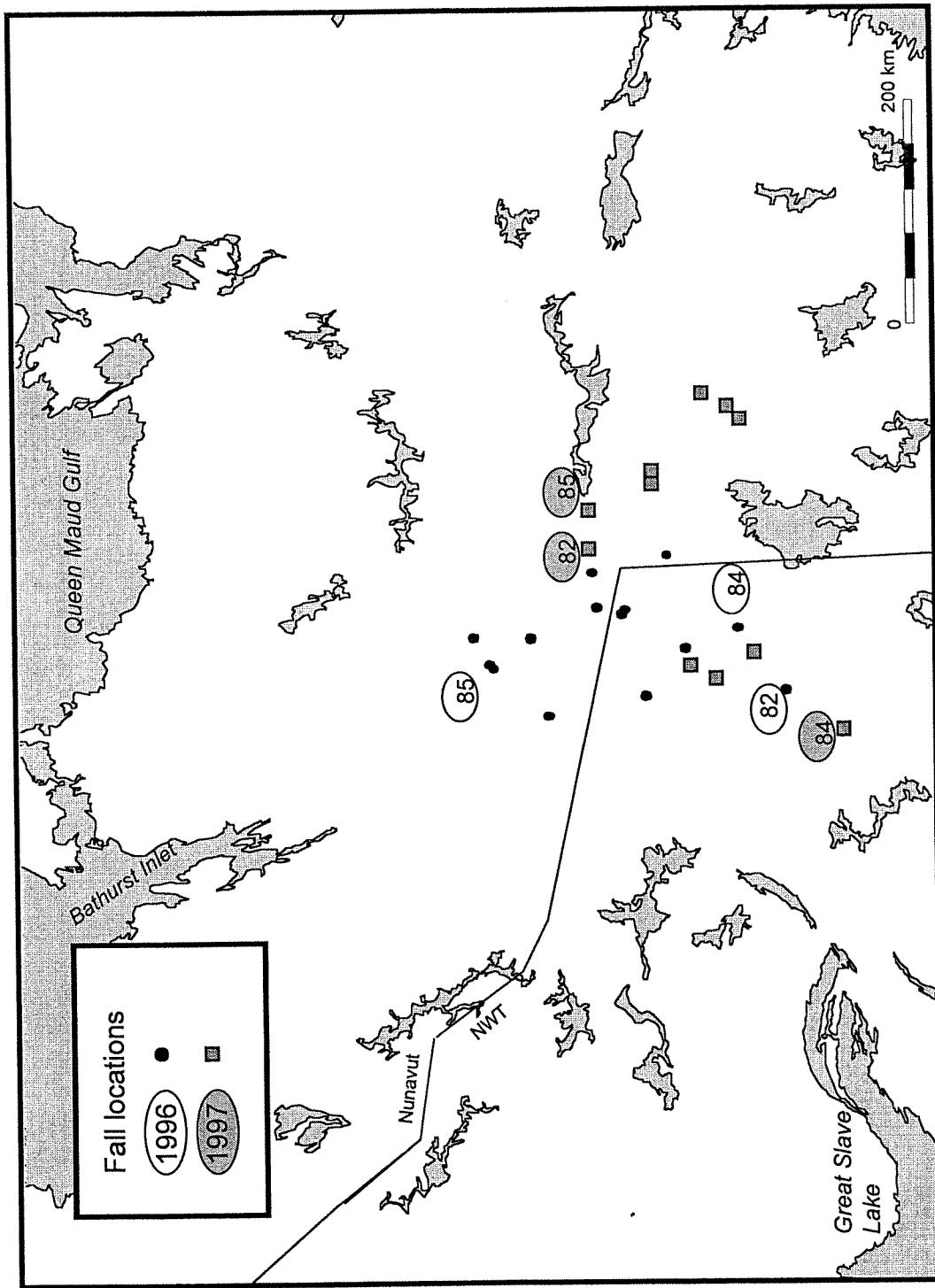



Figure 4. Locations in October 1996 and 1997 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.

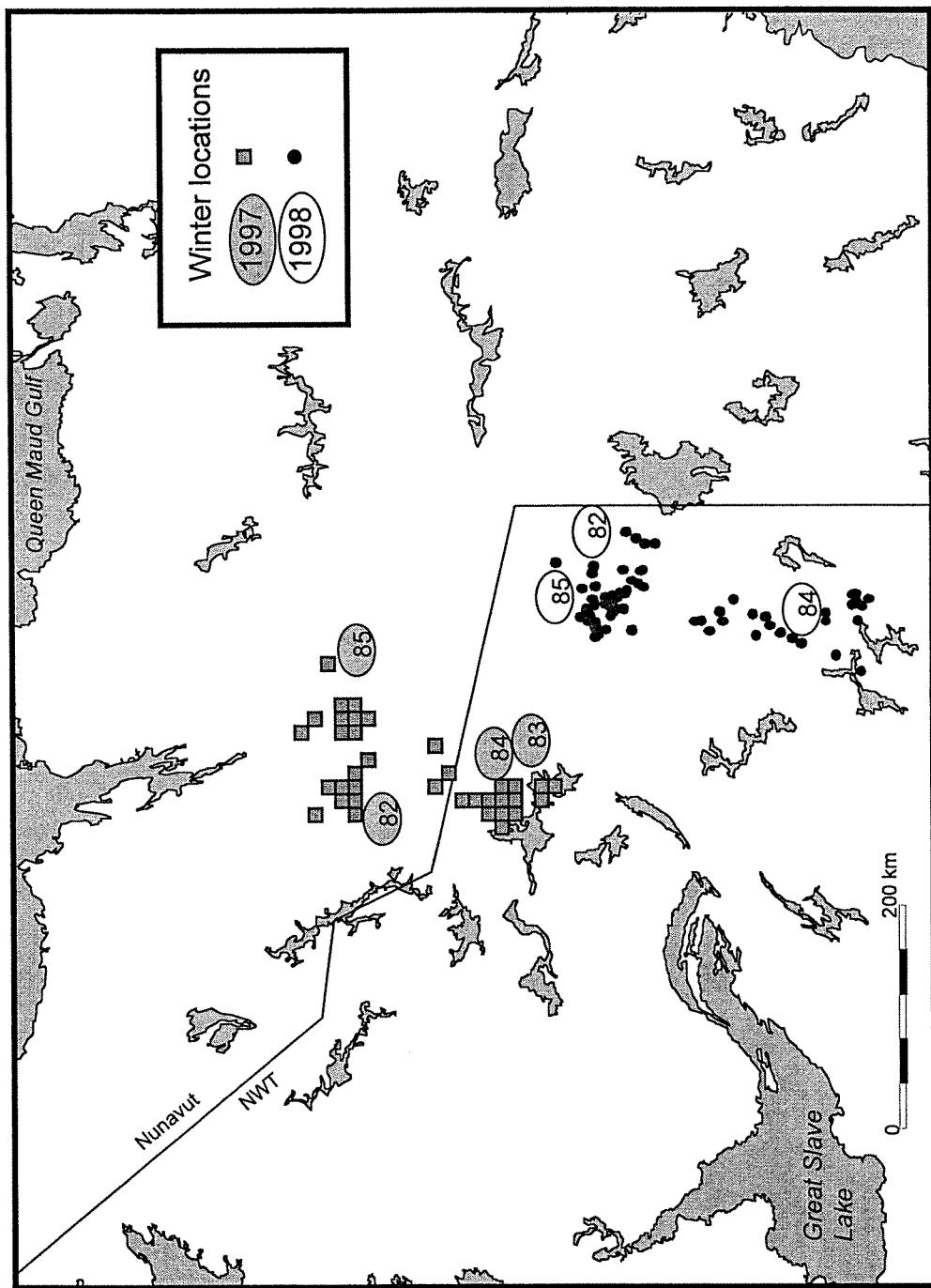



Figure 5. Locations in winter 1997 and 1998 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.

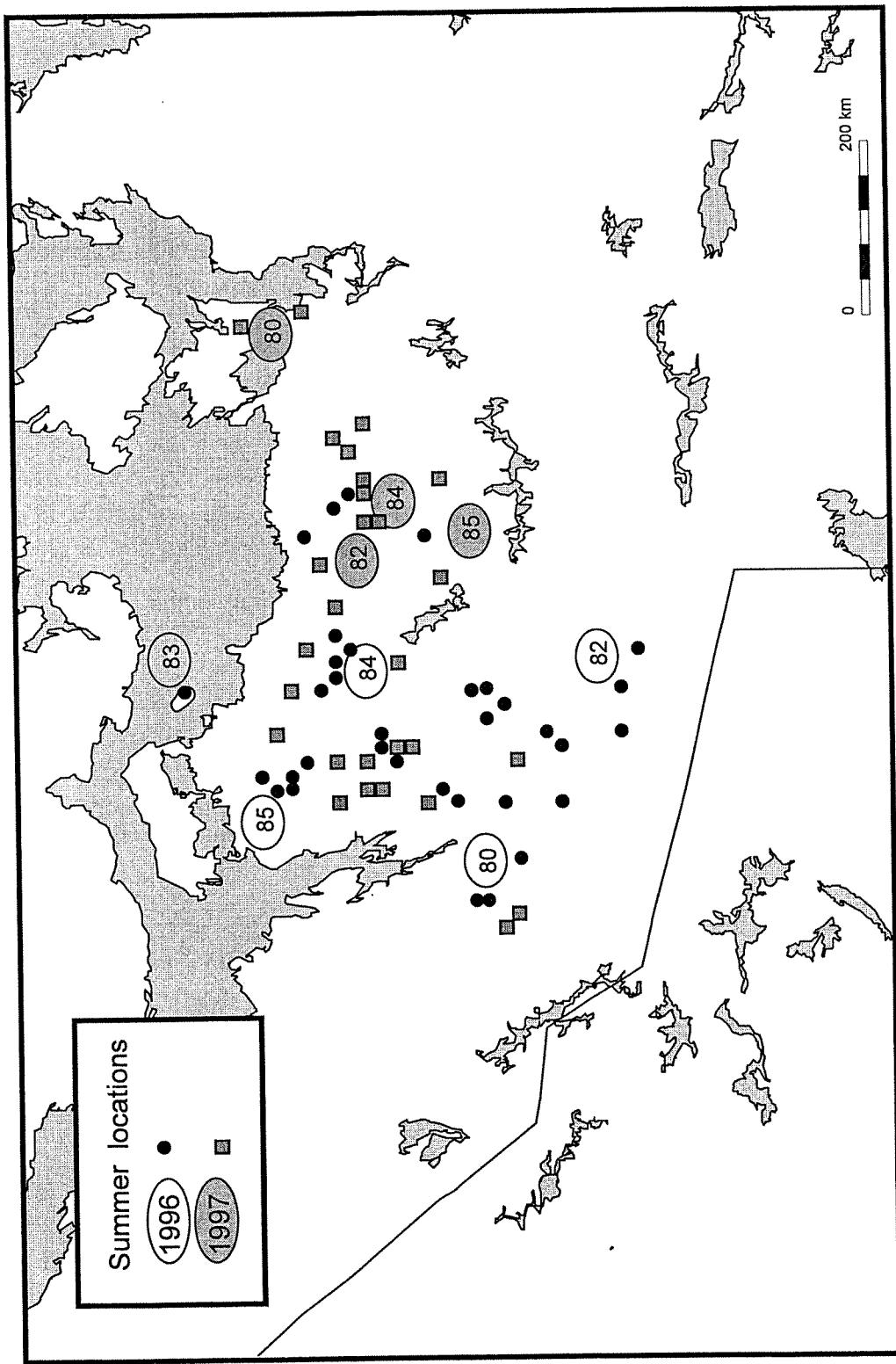



Figure 6. Locations in summer 1996 and 1997 for caribou cows fitted with satellite transmitters, Queen Maud Gulf area, Nunavut/NWT.

When we calculated mean monthly distances moved by all collared cows for 1996-98, we found that the highest mean monthly distances occurred in July and October (Table 3). The lowest distances moved were from December to February. This is further illustrated in Appendix C, showing individual seasonal movements. We compared the monthly distances moved between individual cows during 1996-97 and 1997-98 and did not find any significant differences between the cows' movements (1996-97:  $F=0.15$ ,  $P=0.86$ ; 1997-98:  $F=0.33$ ,  $P=0.72$ ). We also found no significant difference between years for monthly distances travelled ( $F=0.18$ ,  $P=0.97$ ).

**Table 3. Mean monthly distances (km  $\pm$  S.E.) traveled by Queen Maud Gulf collared cows, 1996-98.**

| Month    | Mean distance    | Month     | Mean distance    |
|----------|------------------|-----------|------------------|
| January  | 71.5 $\pm$ 9.8   | July      | 419.6 $\pm$ 38.2 |
| February | 65.7 $\pm$ 4.9   | August    | 140.5 $\pm$ 17.4 |
| March    | 108.9 $\pm$ 25.2 | September | 237.2 $\pm$ 31.7 |
| April    | 222.4 $\pm$ 25.2 | October   | 431.4 $\pm$ 21.6 |
| May      | 227.2 $\pm$ 24.6 | November  | 225.6 $\pm$ 13.4 |
| June     | 132.5 $\pm$ 20.7 | December  | 84.6 $\pm$ 10.6  |

#### **Satellite-collared Caribou Calving Areas**

The collared cows returned to the Queen Maud Gulf Migratory Bird Sanctuary to calve in 1996 and 1997, but there was an average of approximately 130 km distance between the two suspected calving sites for two consecutive years (Table 4). However, the date of calving was estimated from the movement data and not from visual observations.

**Table 4. Distance between calving locations, 1996 and 1997, for satellite collared Queen Maud Gulf caribou.**

| Cow # | Suspected calving date 1996 | Suspected calving date 1997 | Distance between calving locations 1996 and 1997(km). |
|-------|-----------------------------|-----------------------------|-------------------------------------------------------|
| 80    | June 5                      | June 11                     | 174.9                                                 |
| 82    | June 3                      | June 3                      | 147.9                                                 |
| 84    | June 7                      | June 7                      | 69.8                                                  |
| 85    | June 3                      | June 12                     | 38.8                                                  |

We calculated and compared the total straight-line annual movements from calving in 1996 to calving in 1997 for cows #82, #84, and #85 (Appendix E). The patterns of annual movements following calving were similar among cows, although cow #84 traveled further from its calving area in 1997 (Figure 4,5).

The collared cows were closer together during calving and rutting than during summer and winter (Table 5), although the sample is for only three cows.

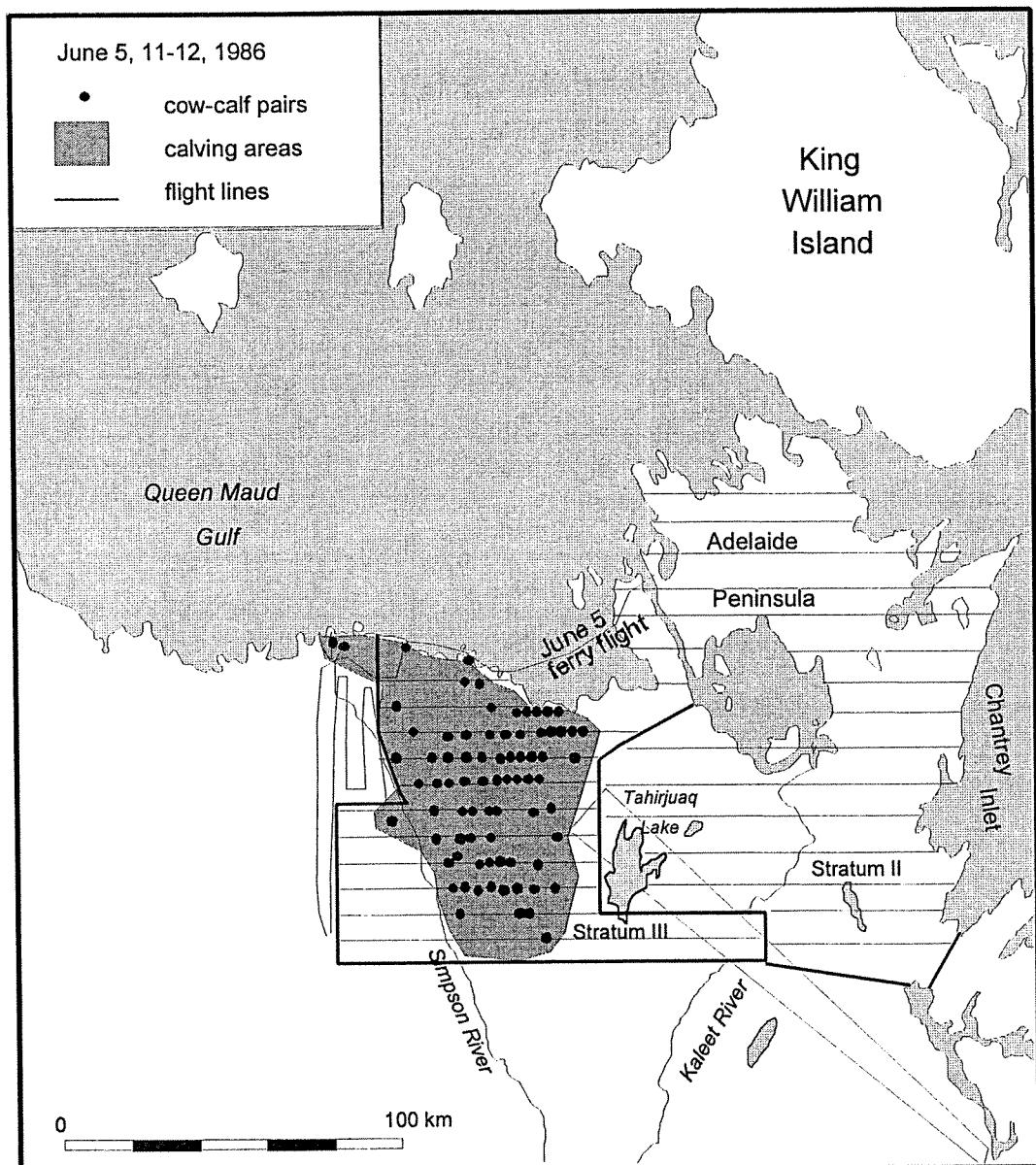
**Table 5. Mean distance between satellite-collared cows during the rut and other seasons during the year.**

| Mean distance between cows (km $\pm$ S.E) |                |
|-------------------------------------------|----------------|
| calving (June)                            |                |
| 1996                                      | 88 $\pm$ 17.3  |
| 1997                                      | 130 $\pm$ 33.3 |
| rut (mid-October)                         |                |
| 1996                                      | 71 $\pm$ 27.1  |
| 1997                                      | 125 $\pm$ 14.6 |
| summer (July/August)                      |                |
| 1996                                      | 119 $\pm$ 24.1 |
| 1997                                      | 216 $\pm$ 60.4 |
| winter (Nov – Apr)                        |                |
| 1997                                      | 140 $\pm$ 22.0 |
| 1998                                      | 162 $\pm$ 33.3 |

#### **Calving Distribution and Abundance in June 1986**

Calving had started by 5 June, as during a single ferry flight along the coast, we saw 14 cows with four newborn calves on the small islands along the coast of Queen Maud Gulf. In Stratum III, we estimated  $10\ 576 \pm 1615$  (SE) caribou (Table 6), which were mostly cows and calves.

Between 11 and 12 June, we recorded a broad band of calving caribou from west of Tahiruaq Lake along the coast to the mouth of the Simpson River (Figure 7). The eastern boundary of the calving area based on cow-calf observations was within the area covered by east-west transects. North-south transects determined the western boundary, and although weather was poor, we found only one cow-calf pair west of the Simpson River even though we continued flying along transects further west. We determined the southern boundary from finding only one cow-calf pair on the last east-west transect line flown. There was no discontinuity in distribution of the caribou calving on the islands off the coast of Queen Maud


Gulf and the mainland. Weather during the survey was broken cloud with sunny breaks, which helped make the caribou more conspicuous against the patchy snow. The melt was underway and bare ground was 20-60%.

**Table 6. Analysis of data from transect surveys, Queen Maud Gulf area, NWT, June 1986 and 1996.**

|                                      |             | 1986<br>St. II | 1986<br>St. III | 1996        |
|--------------------------------------|-------------|----------------|-----------------|-------------|
| <b>Maximum no. of transects</b>      | <b>N</b>    | 80             | 35              | 81          |
| <b>No. transects surveyed</b>        | <b>n</b>    | 18             | 14              | 6           |
| <b>Stratum area, km<sup>2</sup></b>  | <b>Z</b>    | 11 560         | 7 320           | 21 901      |
| <b>Transect area, km<sup>2</sup></b> | <b>z</b>    | 2 400          | 1 976           | 1144        |
| <b>Caribou counted</b>               | <b>y</b>    | 143            | 2 855           | 4 453       |
| <b>Caribou/km<sup>2</sup></b>        | <b>R</b>    | 0.06           | 1.44            | 3.90        |
| <b>Population estimate</b>           | <b>Y</b>    | 689            | 10 576          | 83 134      |
| <b>Population variance</b>           | <b>VarY</b> | 34 121         | 2 608 794       | 143 214 172 |
| <b>Standard error</b>                | <b>SE Y</b> | 185            | 1 615           | 5 298       |
| <b>Coefficient of variation</b>      | <b>CV</b>   | 0.29           | 0.15            | 0.14        |

#### **Calving Distribution and Abundance, 12-13 June 1996**

We conducted reconnaissance flights over the Queen Maud Gulf area in conjunction with a Bathurst calving ground survey to determine the boundaries of the calving area. The east-west boundaries were determined by flying for approximately 10 km after the last caribou was seen on transect (Figure 8). We found the five satellite-collared cows within the coastal calving ground.



**Figure 7. Flightlines and cow-calf observations during an aerial survey of the calving grounds for the Queen Maud gulf herd, June 1986.**

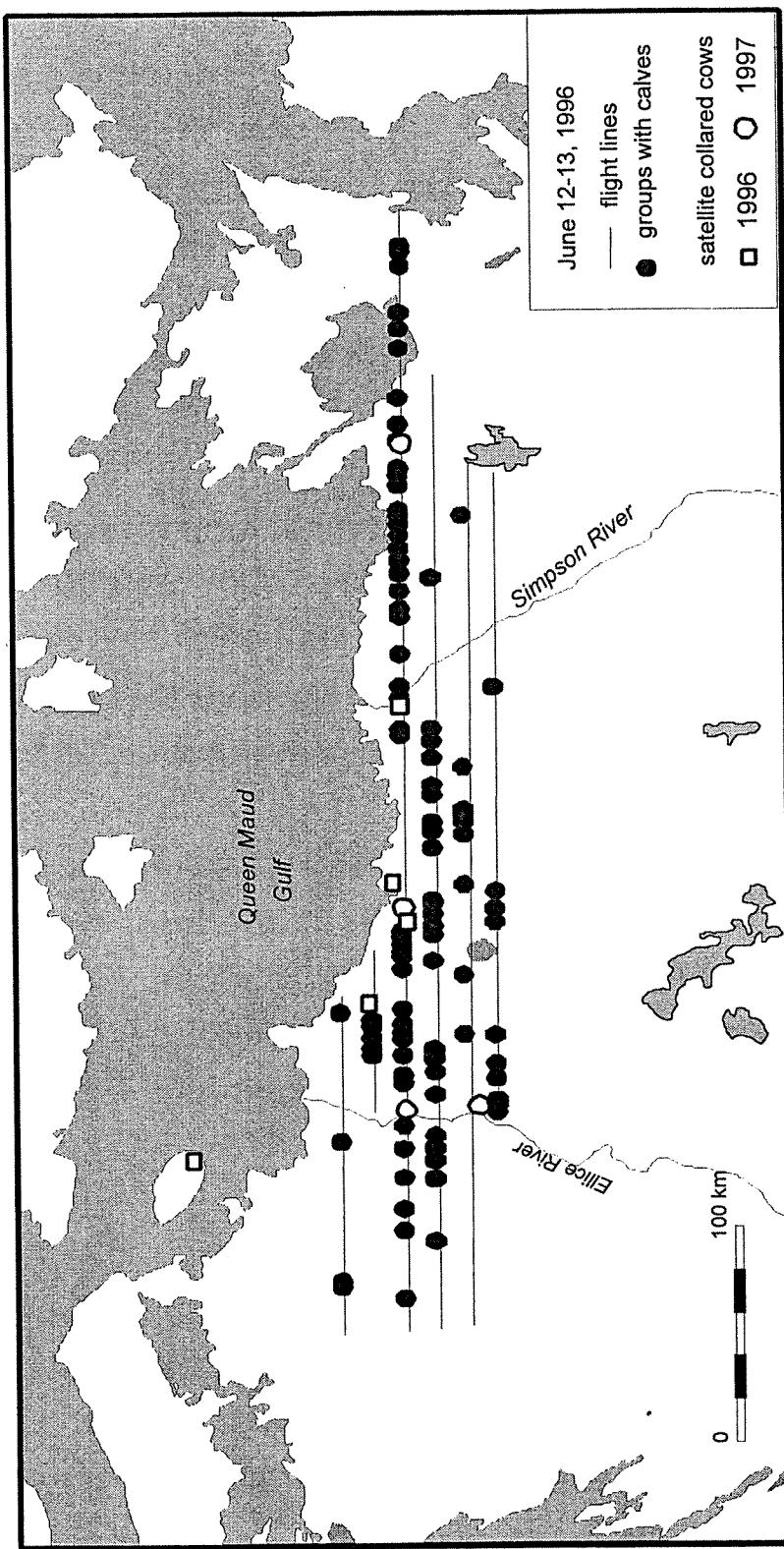



Figure 8. Flightlines and cow-calf observations during an aerial survey of the calving grounds for the Queen Maud Gulf herd, 12-13 June 1996.

## DISCUSSION

Our results identify the caribou cows wintering east of Bathurst Inlet as belonging to a previously undescribed herd, although its existence was suspected. We follow convention in applying the name of a landscape feature at the calving grounds to the herd (Thomas 1969). The Queen Maud Gulf parallels the coastal calving grounds and we use that name in this report (Illiulik is the Inuktitut name). Based on the three satellite collars transmitting between 1996 and 1998 and two aerial surveys in 1986 and 1996, the herd calves in and immediately west of the Queen Maud Gulf Migratory Bird Sanctuary (Figure 9), and postcalving and summer distribution is west and southwest of the calving grounds (Figure 6). The winter range is extending further south-east into the Northwest Territories and possibly changing from wintering on the tundra to wintering in the taiga-tundra transition zone (Figure 5). The extrapolated estimates suggest that the herd increased in size between 1986 and 1996, and in 1996 the herd was the fourth largest barren-ground herd in Nunavut/NWT (after the Qamanirjuaq, Beverly and Bathurst herds), as it may have numbered about 200 000 .

Justification for considering caribou in the Queen Maud Gulf area as a separate herd depends first on compiling evidence for the seasonal presence of caribou in the area and then on determining to which herd those caribou belong or do not belong. Evidence for caribou in the area east of Bathurst Inlet and Queen Maud Gulf area comes from historic sources and aerial surveys. The historic information was summarised from local informants and is recorded in the Nunavut Atlas. The central part of the area covered by the map sheet (66N, 1:250 000 scale National Topographic Series) for Ogden Bay, (essentially the Queen Maud Gulf Migratory Bird Sanctuary) may be used by small numbers of caribou for calving. The Atlas also refers to the Ogden Bay map as being year-round range for a resident caribou population of up to 10 000. The northern portion was thought to be used for the summer and southern portion for the winter. MacAlpine Lake was used as a water crossing. Elders from Baker Lake identified the area between Ian Calder Lake and Franklin Lake as a calving area in the past (R. Decker pers. comm. 1986).

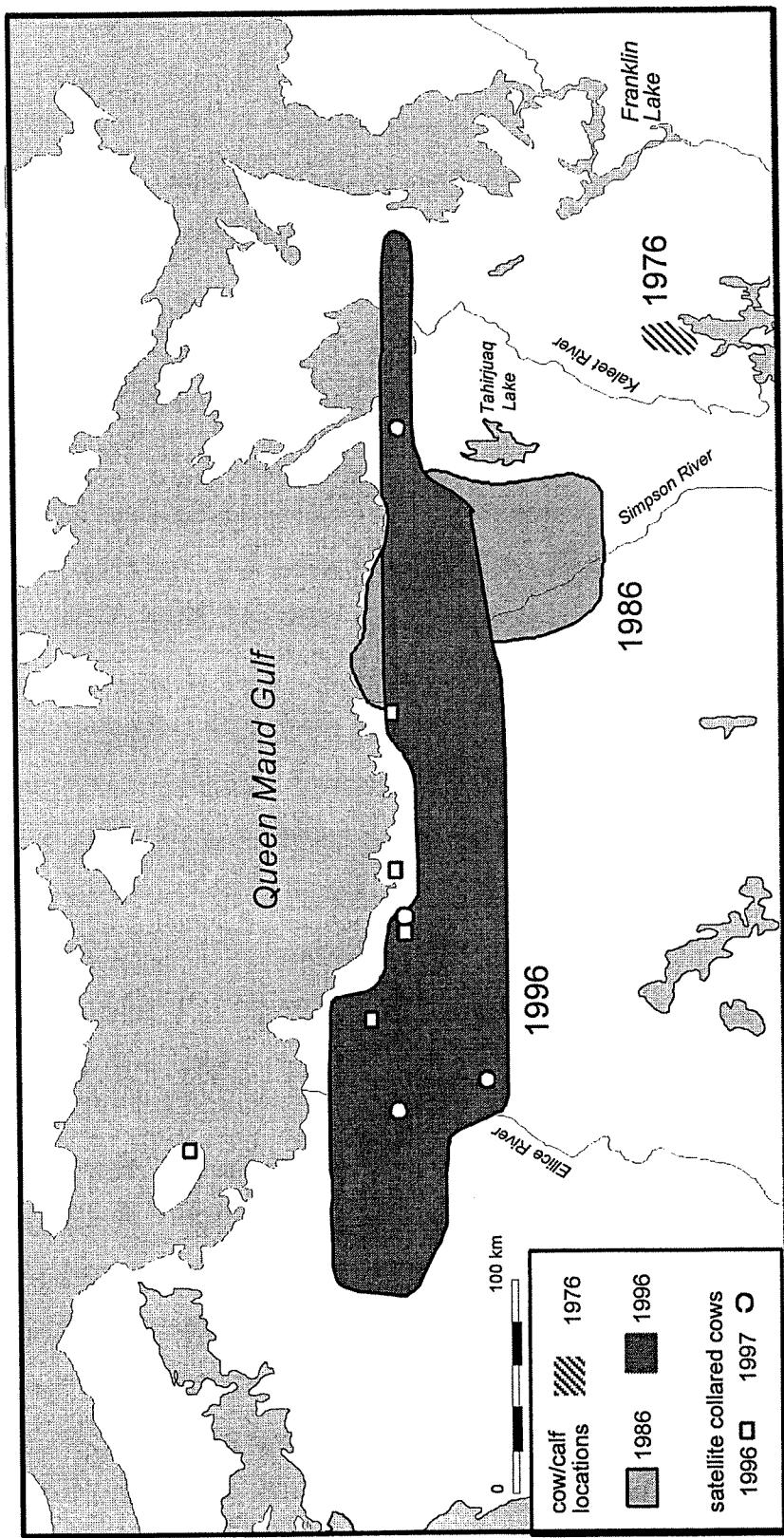



Figure 9. Calving grounds for the Queen Maud Gulf herd 1986-96 based on aerial surveys and satellite-collared cows.

Aerial surveys for caribou from the 1960s to the 1980s concentrated on the Bluenose, Bathurst, Beverly and Qamanirjuaq herds, and the Queen Maud Gulf area was not included. Summer aerial surveys for geese recorded only few caribou (T. W. Barry pers. comm. 1984) although observations of muskoxen were included (summarised in Gunn and Case 1984). R. Decker (pers. comm. 1986) speculated that the Queen Maud Gulf coast was a calving area based on Gavin (1945, in Gunn and Case 1984) and sightings of groups of postcalving caribou in July 1982 and again in July 1983.

Surveys collecting baseline information for the proposed Polar Gas pipeline in the early 1970s covered the pipeline's potential route and covered the area south and east of Adelaide Peninsula. Fischer and Duncan (1976) flew aerial transect surveys from Hayes River to Baker Lake in May 1975, and Fischer *et al.* (1977) also covered the area from 4 to 15 June 1976 and reported a small concentration of cow-calf pairs west of Franklin Lake.

The surveys and information for the 1950s through to the 1970s had suggested that caribou numbers in the Queen Maud Gulf area were low. By the early 1980s, hunters from Gjoa Haven were reporting increasing caribou numbers on Adelaide Peninsula. Heard *et al.*'s (1987) precalving survey in May 1983 revealed large numbers of caribou in the area. Buckland *et al.* (in prep.) also found concentrations of caribou in the Queen Maud Gulf area in May 1995. Those concentrations are close to the areas that we recorded as calving areas in 1986 and 1996, as described in this report.

In April 1986, during snowmachine surveys, we had seen 100s of barren-ground caribou on Kent Peninsula although at that time we considered them to be a tundra-wintering segment of the Bathurst herd (Gunn *et al.* 1997a). By the early 1990s, arctic-island caribou migrating over the sea-ice from Victoria Island were replacing the barren-ground caribou wintering north-east of Bathurst Inlet (Gunn *et al.* 1997a). This was also evident during surveys flown between 1996 and 1998 east of Bathurst Inlet to collect baseline environmental data for the Hope Bay Belt area (Ross 1997, Rescan Environmental Services Ltd 1999). The surveys sampled caribou distribution north east of Bathurst Inlet area using east-west transects 4-km

apart, 30-km long, covering an area from the coast to 70-100 km inland. Most of the caribou seen in November 1996 were barren-ground caribou, but in February 1997 most were arctic-island caribou from Victoria Island. However, the following February (1998), all 188 caribou seen were barren-ground caribou, although arctic-island caribou migrated from Victoria Island into the Hope Bay survey area in December 1998 (Rescan Environmental Services Ltd 1999).

Prior to the 1990s, the Bathurst herd calved east of Bathurst Inlet but surveys revealed a progressive shift to the west (Figure 10). In June 1995, cows and calves were observed during a systematic survey both east and west of Bathurst Inlet; most cows were west of the Inlet and the cows east of the Inlet were mostly moving east (Gunn 1996). Based on 1° longitudinal zones, distribution of cows and calves was continuous on either side of Bathurst Inlet. However, within those longitudinal zones, there was a discontinuity in calving distribution (minimum 40 km) along the east coast of Bathurst Inlet. This was also apparent in June 1996 when we surveyed east and west of Bathurst Inlet (Gunn *et al.* 1997b). We observed cows and calves on both sides of the inlet with a gap along the east coast of Bathurst Inlet. In 1997 and 1998, calving was again recorded on both sides of Bathurst Inlet but the distribution was not mapped extensively enough to determine whether it was continuous (Ross 1997, Rescan Environmental Services Ltd 1999, West Kitikmeot Slave Society Study unpubl. data).

The surveys between 1995 and 1998 suggest that caribou were calving both west and east of Bathurst Inlet and that, at least in 1996, the calving distribution was discontinuous, forming two distinct annual calving grounds. Other evidence for two distinct annual calving grounds is the location of collared cows from the Bathurst herd. All (9-14) satellite-collared Bathurst cows calved west of Bathurst Inlet between 1996 and 1999 (Gunn *et al.* 1997b, unpubl. information) compared to cows collared east of the Inlet, which calved east of the Inlet in 1996 and 1997.

The definition of a caribou herd is conventionally based on the return of pregnant cows to a traditional calving ground. The three collared cows were in the area covered by the calving

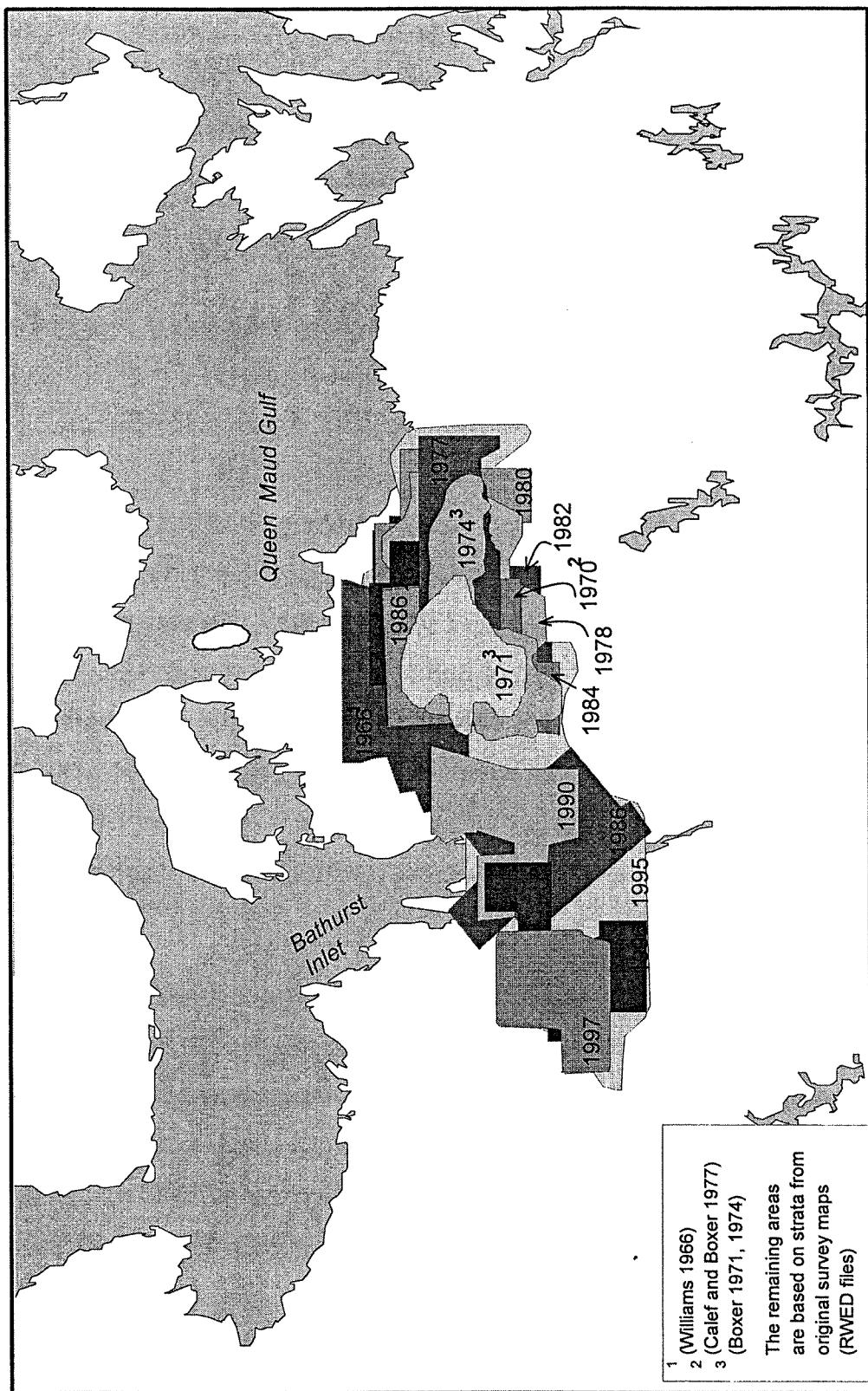



Figure 10. Calving grounds for the Bathurst herd 1966-97, based on aerial surveys and satellite-collared cows (Sutherland and Gunn 1996).

ground aerial survey in June 1996, which overlapped with the 1986 calving ground (Figure 9). The collared cows were assumed to have calved based on their movement patterns but we did not verify calving by visual observations.

The survey information described above and locations of the Bathurst satellite-collared cows suggest that the three cows collared east of the Inlet in April 1996 should not be assigned to the Bathurst herd. This is strengthened by the distribution of collared cows in October (which includes the rut) east of Great Slave Lake in the Thelon Game Sanctuary, which was separate from the distribution of the Bathurst collared cows (Figures 4 and 11), although the Bathurst herd did winter southeast of Great Slave Lake in winter 1997 (Figure 12). We do not have exact information on the timing of the peak and duration of the rut for either the Bathurst herd or the Queen Maud Gulf caribou, but it may differ by a few days since the calf:cow ratios in 1996 suggest that peak calving was later for the Queen Maud Gulf caribou. The distribution of the collared cows makes it a likelihood but not a certainty that distribution during the rut did not overlap since we did not survey to establish the distribution of other caribou.

The Queen Maud Gulf herd's distinction from the Beverly herd is based on geographically separate calving grounds (Figure 13). The Beverly herd's annual calving ground has a rotational shift with a high degree of overlap (Gunn and Sutherland 1997b). The calving grounds mapped between 1957 and 1994 (Figure 14) are south of the Queen Maud Gulf Migratory Bird Sanctuary (Figure 15). Overlap during the rut is unlikely, as the Beverly herd's known rutting areas are along and south of the treeline (Beverly and Qamanirjuaq Caribou Management Board 1999, Gunn 1984). Overlap during the winter is possible but information for the Beverly herd's distribution during the 1990s is mostly lacking.

Our definition of herds based on calving grounds is pragmatic and if those herds are relatively stable populations over time, breeding within the herds should lead to genetic differences between herds. Genetic samples are available from the Bathurst herd (unpubl. data) but not for either the Beverly or Queen Maud Gulf herd. Describing genetic diversity as sampled through nuclear DNA would contribute to understanding distinction between herds, although defined criteria are needed for what constitutes distinctiveness from neighboring populations.

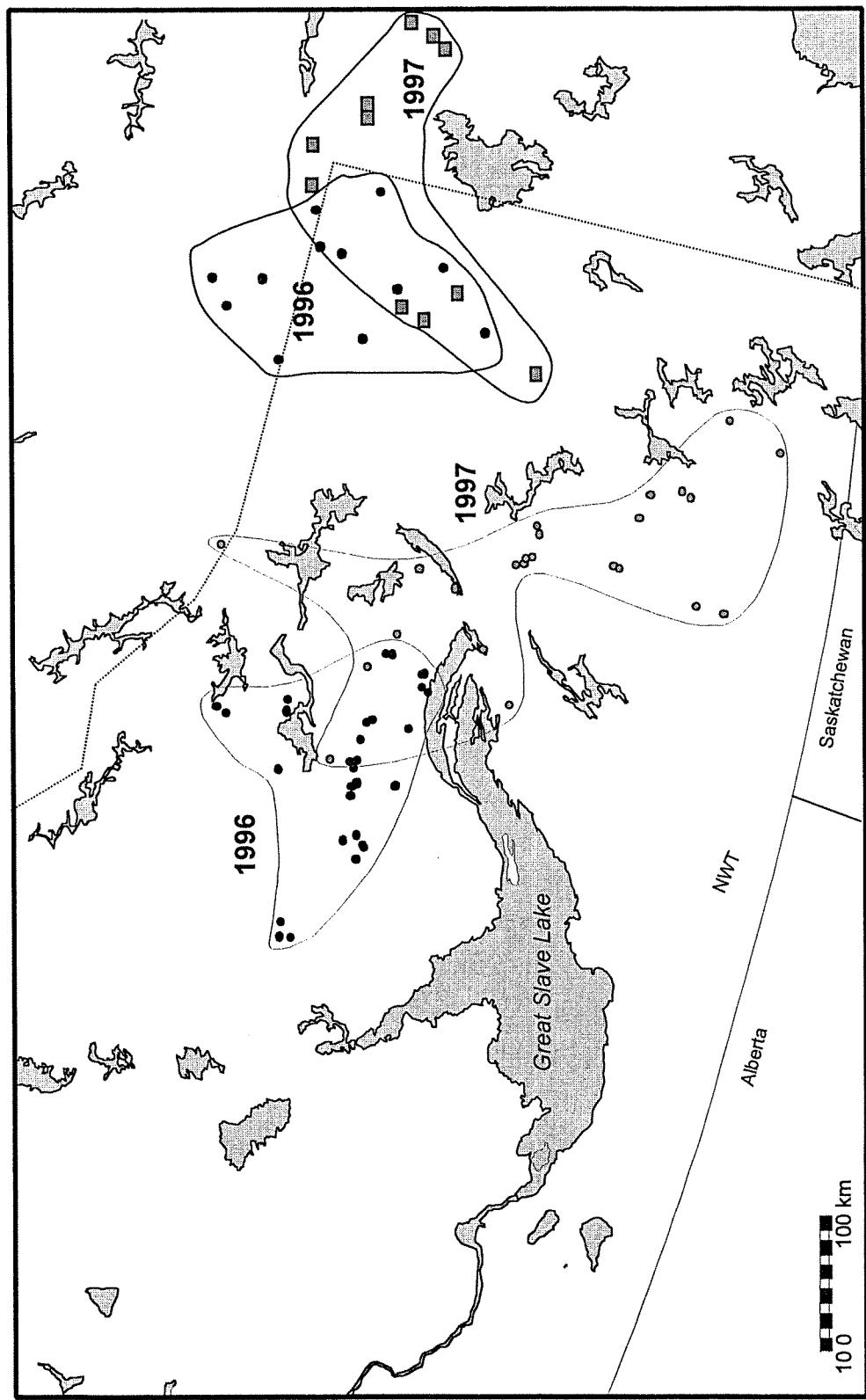



Figure 11. Distribution of satellite-collared cows from the Bathurst and Queen Maud Gulf caribou herds in October 1996 and 1997.

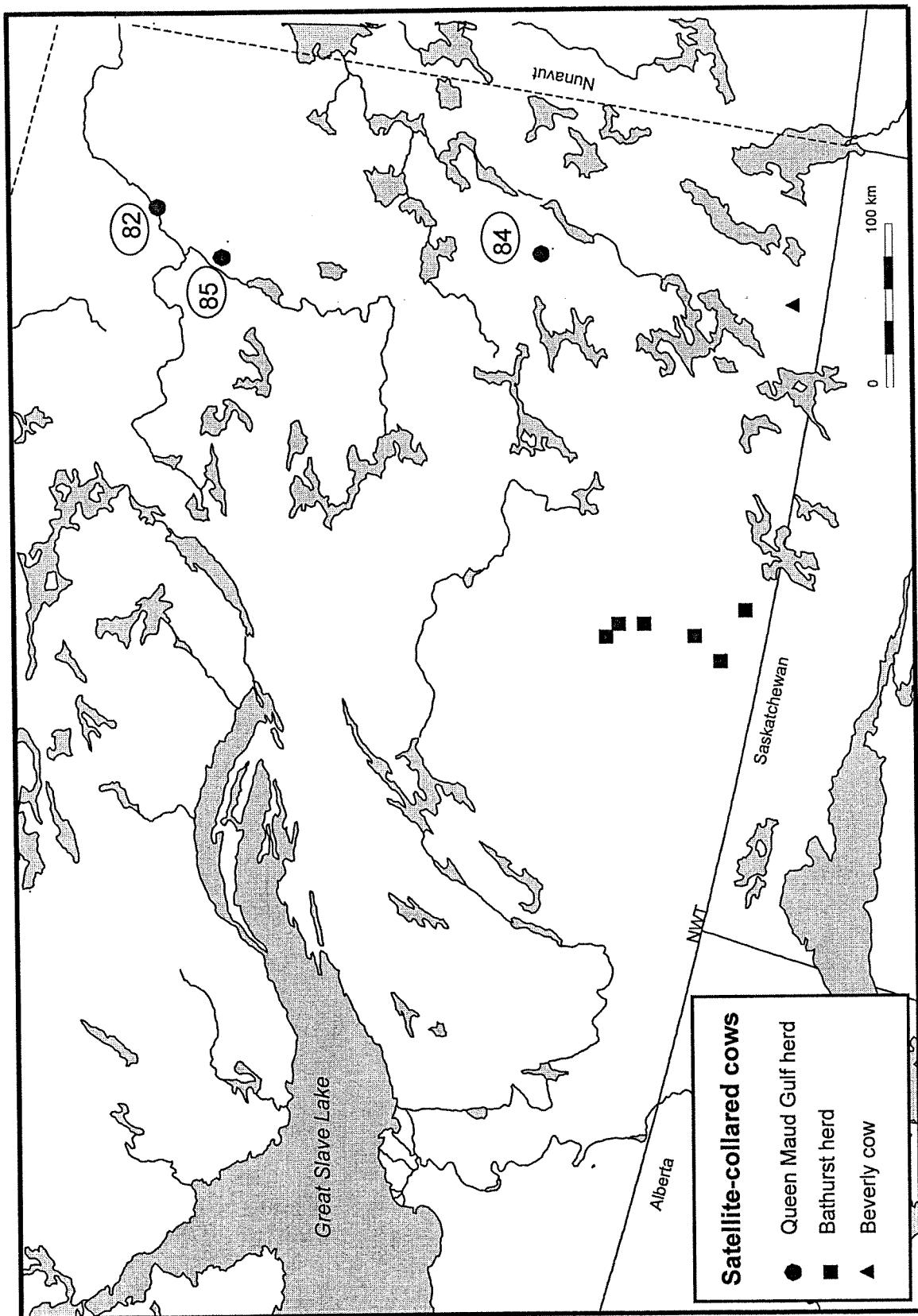



Figure 12. Locations of collared cows from the Bathurst herd, Queen Maud Gulf herd and Beverly herd 8 December 1997.

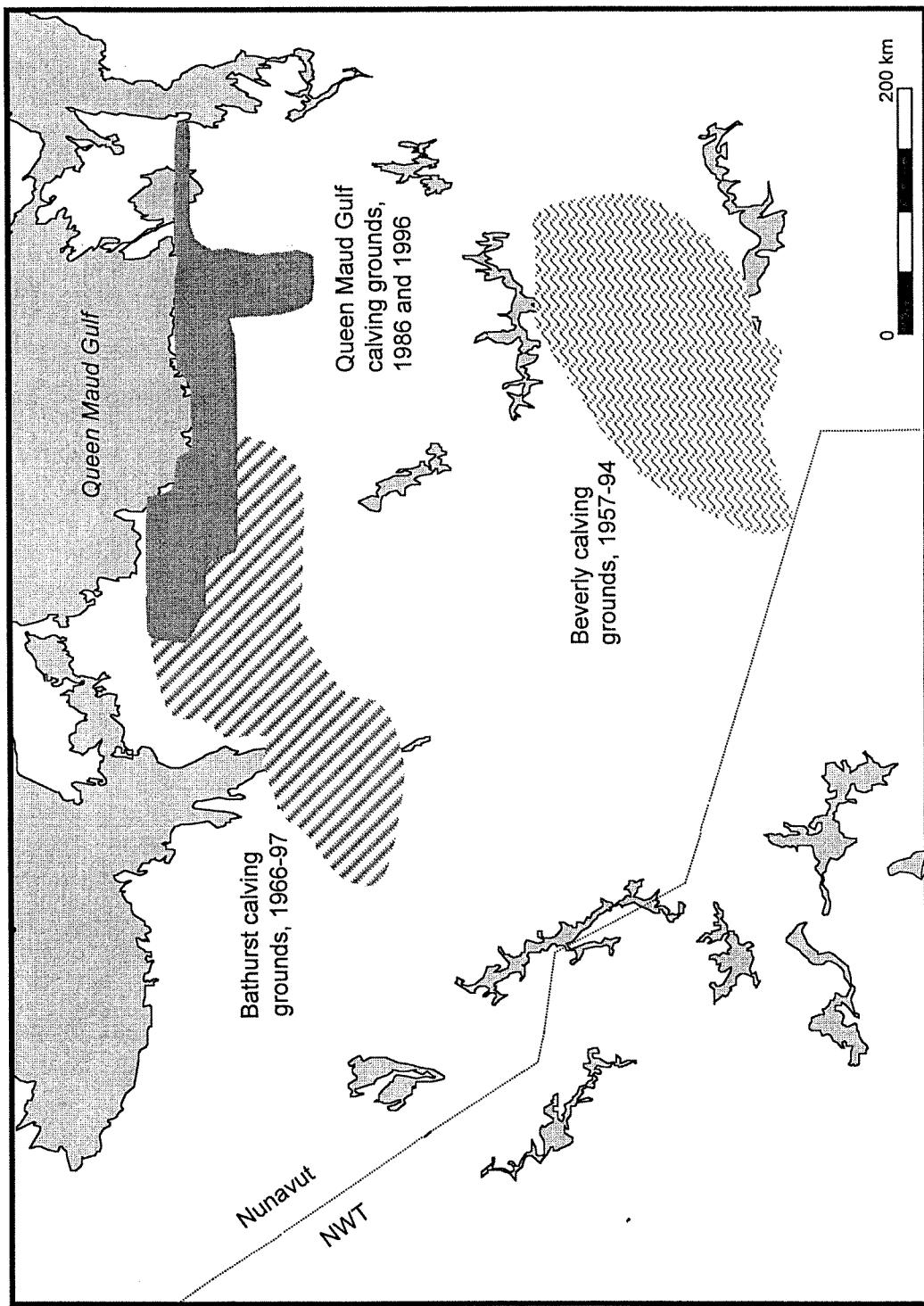



Figure 13. Calving grounds for the Queen Maud Gulf herd (1986-96), the Bathurst herd (1966-97) and Beverly herd (1957-94) based on aerial surveys and satellite-collared cows.

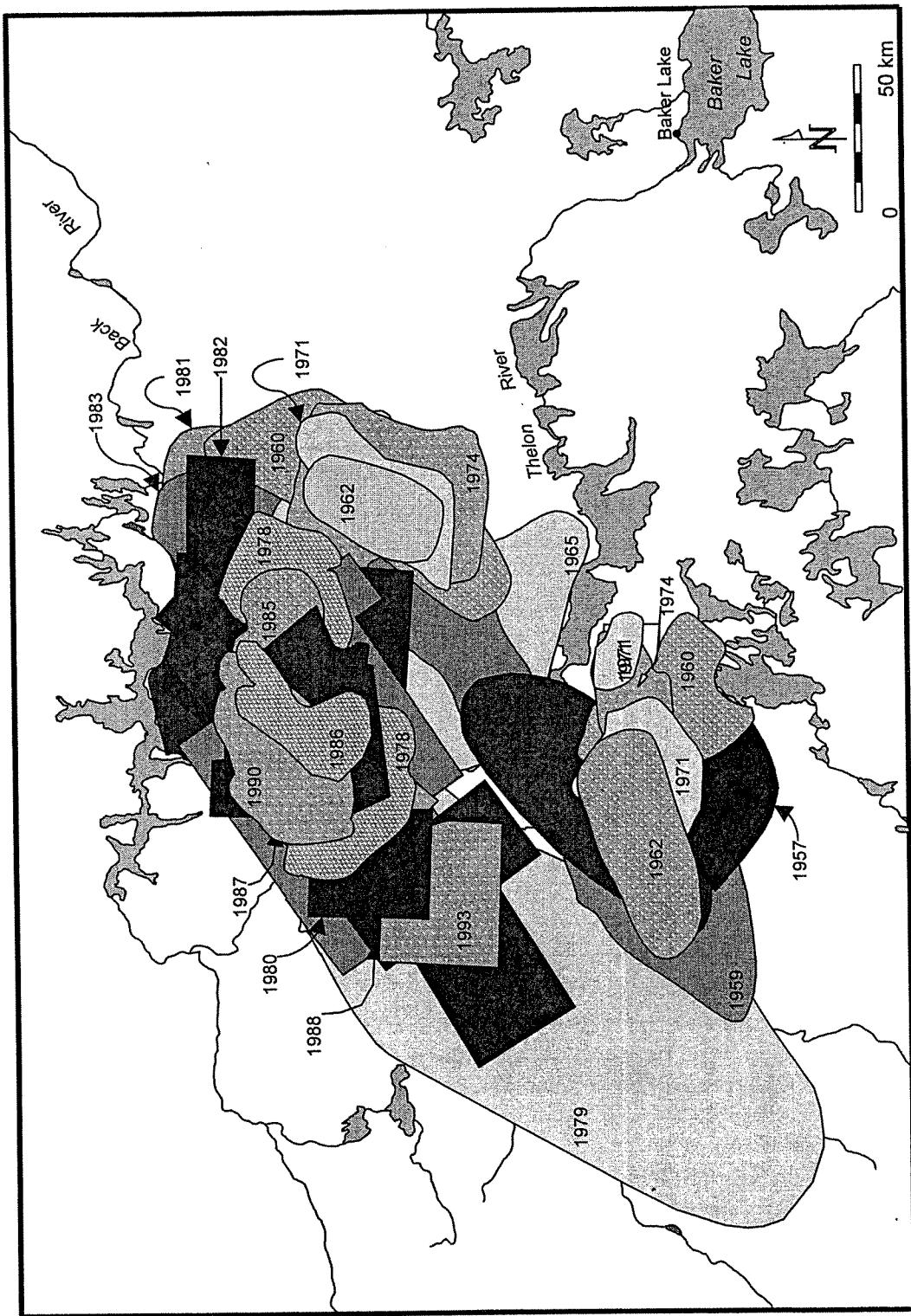
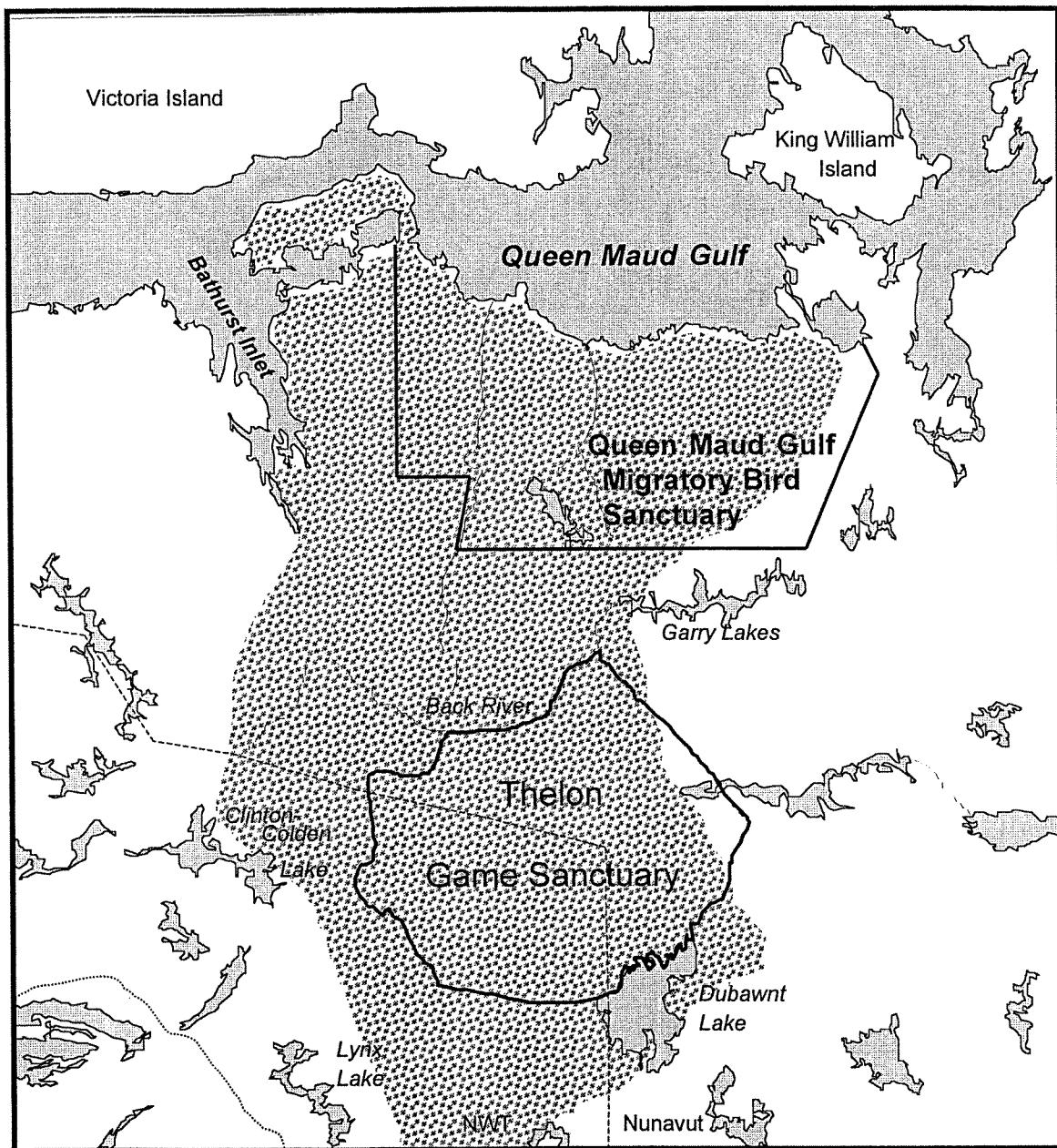




Figure 14. Superimposed annual calving grounds delimited during unsystematic and systematic reconnaissance surveys on the Beverly calving grounds, 1957-1994 (Gunn and Sutherland 1997b).



**Figure 15. Queen Maud Gulf caribou herd range between 1996 and 1998, the Queen Maud Gulf Migratory Bird Sanctuary and the Thelon Game Sanctuary, Nunavut/NWT.**

### Abundance in 1986 and 1996

The two surveys in 1986 and 1996 were primarily to describe calving distribution but we have also used them to estimate the numbers of caribou, mostly cows and calves, in the areas. However, to extrapolate those estimates to population estimates is only a rough approximation. We did not undertake composition surveys in 1986 or 1996 to describe the sex and age classification of the caribou to determine the proportion of breeding females, which is required information to extrapolate to herd size (Heard 1985).

If, however, we assume that 64% of the caribou on the calving grounds are breeding females (similar to the Bathurst herd in 1996) then 6800 caribou on the calving grounds in 1986 were breeding females, and based on the observer bias determined from aerial photography, we could double that estimate as an approximation. Following Heard's (1985) method for estimating population size using the proportion of breeding females in the herd and pregnancy rates (based on information averaged from other NWT barren-ground herds), we can extrapolate to a population size of 32 000 caribou. This is within the range of numbers – (33 000  $\pm$  5100 caribou) that Heard *et al.* (1987) estimated in the Queen Maud Gulf area in May 1983. A similar approximation based on the 1996 calving survey suggests that the herd may have numbered 200 000 but the coverage was only 6% and the survey was unstratified. However, the precalving survey in May 1995 estimated 31 556  $\pm$  4879 caribou (Buckland *et al.* In Prep.).

Relationships between the Queen Maud Gulf herd and caribou herds to the east are unknown partly because uncertainty remains about the abundance and distribution of herds in the northeastern mainland. Gunn and Fournier (2000) summarise information on calving distribution for the area that suggests there are several herds but local and historic knowledge has not been compiled. Of particular interest are the caribou using Adelaide Peninsula; use of the area by collared cow #80 in July 1997 suggests that the caribou on the Adelaide Peninsula in summer are from the Queen Maud Gulf herd. Caribou historically summered on Adelaide Peninsula and King William Island (Appendix G).

The caribou share their summer habitat in the wetlands of the Queen Maud Gulf area (54 000 km<sup>2</sup>) with many other herbivores. In 1996, there were 4255 ± 680 muskoxen (*Ovibos moschatus*) (J. Nishi unpubl. data.) and over a million geese. Gunn and Sutherland (1997a) described overlap in summer habitat use and diet (*Eriophorum* and other sedges). The collared cows moved extensively east-west in July (Tables 1 and 4) possibly in response to insect harassment. Other summer movements may be north-south, as in 1984 and 1992 when we observed caribou cows wading in shallow coastal waters during warm, calm weather in July (A. Gunn unpubl. information).

The annual range of the Queen Maud Gulf herd between at least 1996-98 overlaps with the Queen Maud Gulf Migratory Bird Sanctuary and the Thelon Game Sanctuary, although it is usually the Beverly herd that is associated with the Thelon Game Sanctuary (Figure 15). The ranges used in 1996-98 overlap with proposed mines (Windy Lake and Boston) on the calving and winter range east of Bathurst Inlet, are adjacent to the proposed George Lake property and are within 50-60 km of the proposed mines at Diavik and Kennedy Lake (Figure 16).

The changes in range use between herds in the central arctic mainland during the 1980s and 1990s include:

- 1) Dolphin and Union caribou have replaced Queen Maud Gulf caribou on the winter range on Kent Peninsula and northeast Bathurst Inlet.
- 2) Queen Maud Gulf caribou have replaced Bathurst herd caribou on the eastern traditional calving grounds.

Shifting occupation of winter range as numbers change is typical if not a characteristic of caribou, and those shifts have been recognised for decades (for example, Ferguson and Messier's 1997 compilation of Inuit knowledge). Where enough information is available, the shifting range patterns can be characterised as rotational within a traditional range of either winter (Russell *et al.* 1993) or calving grounds (Sutherland and Gunn 1996, Gunn and Sutherland 1997b). However, given the diversity of ecological conditions across the circumpolar distribution of caribou and reindeer, variations are to be expected.

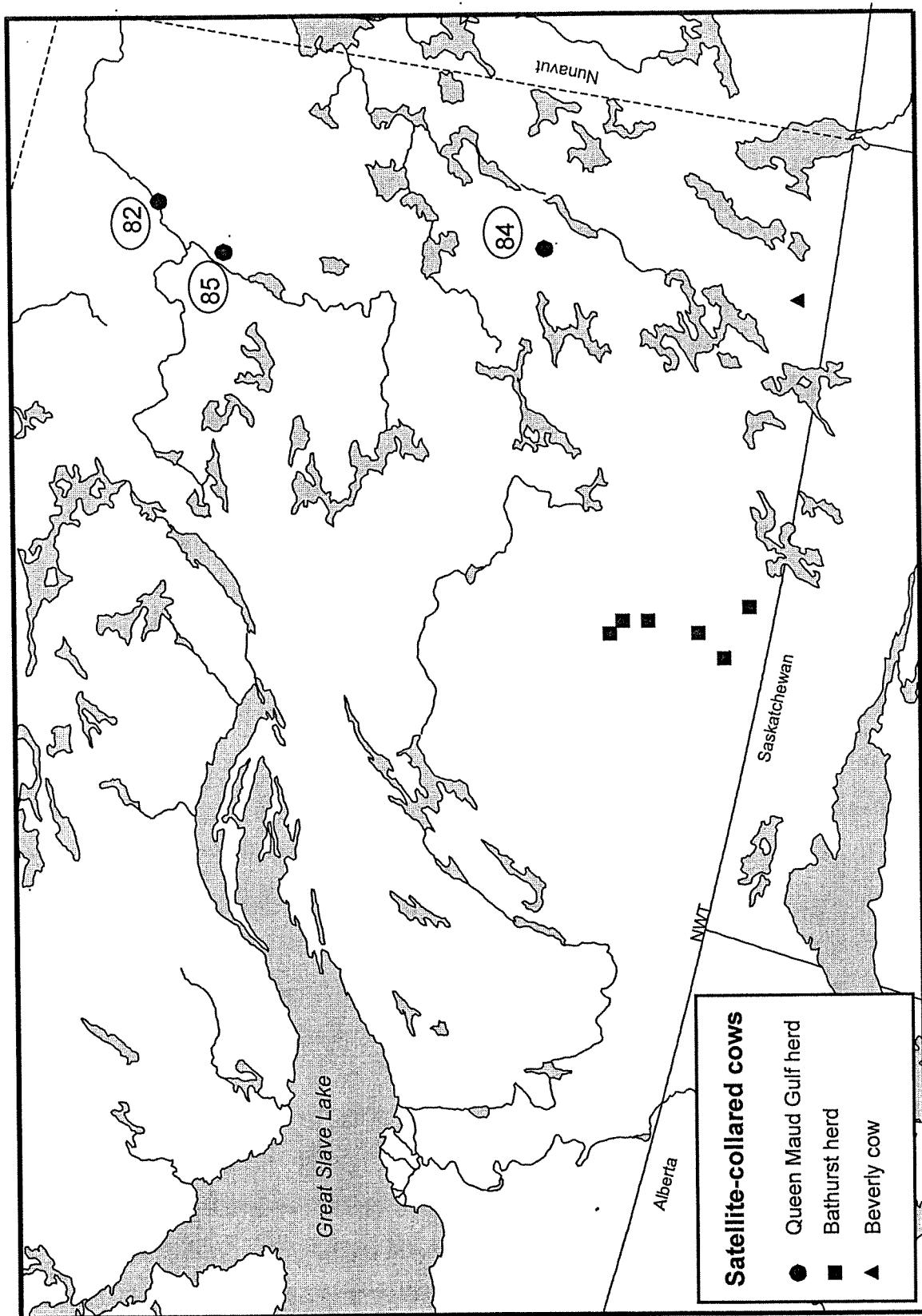



Figure 16. Locations of collared cows from the Bathurst herd, Queen Maud Gulf herd and Beverly herd December 8, 1997.

Describing caribou migratory behaviour and range use has lagged behind understanding of mechanisms for range use by other large gregarious herbivores such as geese, wildebeest (*Connochaetes taurinus*) and African buffalo (*Syncerus caffer*) (references in Drent and Van der Wal 1999). Those herbivores return to forage at patches at intervals from days to months depending on the weather (for example rainfall), how faecal return of nutrients affect plant growth and the presence of other herbivores. Timing of plant response to faecal fertilisation depends on the rate that soil organisms mineralise the faecal nitrogen and, for perennial grasses, the extent that they draw on stored nutrients for regrowth after being grazed (Jefferies 1999).

The frequency or even existence of 'rotational passage grazing' (McNaughton and Banyikwa 1995) has not been applied to caribou through studies of diet, range use or plant community responses. Jefferies *et al.* (1992) suggested that migratory caribou were not closely coupled to their forage since faecal deposition and the plants are not spatially coupled. However, the relationship may be occurring over a longer time scale and may be complicated by differences between how shrubs and lichens respond compared to perennial grasses – most of the work on herbivores and regrazing cycles have focused on grass-eating herbivores. The only published example of a possible regrazing cycle in caribou or reindeer is from Greenland (Thing and Clausen 1980). The regrazing caused *Poa pratensis* 'lawns', but for the calving wild reindeer those lawns increased the risk of bacterial disease. This raises the question of a trade-off between disease and parasite risk versus nutritional gain from new plant growth – faecal deposition supplies both the nutrients for plant growth and the risk of exposure to disease and parasites through faecal-based infection (van der Wal *et al.* In Press).

The likelihood that cyclic grazing (regrazing promoted by faecal fertilisation) applies to caribou and reindeer may depend on the importance of perennial grasses in the diet. A high proportion of perennial grasses available and in the diet would likely promote cyclic grazing and a greater frequency of return grazing bouts. This could explain both the fidelity to postcalving ranges for at least the Bluenose herds (J. Nagy unpubl. data) and the Bathurst

herd (unpubl. data) and also differences in fidelity to annual calving grounds. The Porcupine herd has greater overlap in annual calving grounds and a greater use of perennial grasses than does, for example, the Bathurst herd (Russell *et al.* 1993, Sutherland and Gunn 1996, Griffith *et al.* In Press).

Explanations for range shifts are likely more complex than a simple response to forage and may reflect the caribou's condition (state of forage earlier in the previous season) as much as the conditions (including predation) on the range presently occupied. For example, caribou in good condition may be more likely to move to further ranges and this might be consistent with Fleischman's (1990) suggestion "...it [range use] is inherent behaviour which costs little, results in benefits of several kinds and is elicited by social rather than environmental stimuli...". However, hypotheses such as cyclic grazing (McNaughton's grazing optimisation) can be tested and will contribute to predicting migratory behaviour and at least some range shifts.

Shifts in range size were the basis for the studies described in this report. The Queen Maud Gulf caribou herd has increased in size between at least 1986 and 1996, although uncertainty will remain about its exact size until an appropriately designed survey is undertaken to estimate herd size. The satellite collars, admittedly a small sample size, and historical observations suggest that the herd has increased its annual range since at least 1986. The satellite telemetry indicates that the caribou cows wintering east of Bathurst Inlet were part of the Queen Maud Gulf herd and Cambridge Bay's commercial quotas for the Bathurst herd could be applied to the Queen Maud Gulf herd.

We were only able to collar cows on the northwest distribution of the late winter range occupation in 1996. We suggest a better understanding of the entire annual range of the Queen Maud Gulf herd would be accomplished if more collars (ie. 10) are distributed more evenly across the winter distribution. In hindsight, more representative sampling across the entire winter distribution (as far east as the Ellice River and MacAlpine Lake) would improve this study and be more accurate at the larger spatial scale of the annual range of Queen Maud Gulf caribou.

## ACKNOWLEDGEMENTS

The Nunavut Wildlife Management Board funded the satellite-collaring study and the Department of Resources, Wildlife and Economic Development, Government of Northwest Territories, funded the aerial surveys. The Department of Sustainable Development, Government of Nunavut, contributed to the finalization of this report. Dave Olson, Air Tindi Ltd., flew the Husky for us during the reconnaissance survey. Doc Sutherland and Stewart Wood, Outbound Aviation Ltd., undertook the net-gunning for the caribou captures. We extend a special thank-you to the people of Umingmaktok for their hospitality and the Umingmaktok Hunters and Trappers Association for the use of their office building during our field capture sessions. We thank Ken Lambert, Judy Dragon and Joseph Tikhak for observing during the aerial surveys and Warren Wright and Perry Linton (NorthWright Air Ltd.) for piloting the surveys. Chris Hanks made available environmental data from BHP International Inc. We thank Brent Patterson (Department of Sustainable Development) for thorough and helpful comments on this report.

## **PERSONAL COMMUNICATIONS**

T.W. Barry, Canadian Wildlife Service, Edmonton, Alberta.

Robert Decker, Department of Resources, Wildlife and Economic Development,  
Government of Northwest Territories

## LITERATURE CITED

Beverly and Qamanirjuaq Caribou Management Board. 1999. Protecting Beverly and Qamanirjuaq caribou and caribou range. Beverly and Qamanirjuaq Caribou Management Board, Ottawa, Ontario, 40pp.

Buckland, L., J. Dragon, A. Gunn, J. Nishi and D. Abernathy. In prep. Distribution and abundance of caribou on the northeast mainland, NWT, 1995. Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, Manuscript Report.

Drent, R.H. and R. van der Wal. 1999. Cyclic grazing in vertebrates and the manipulation of the food resource. Pages 271-299. In : eds H. Olff, V. K. Brown and R. H. Drent. *Herbivores: between plants and predators*. Blackwell Science, Oxford, United Kingdom, 639pp.

Ferguson, M.A.D. and F. Messier. 1997. Collection and analysis of traditional ecological knowledge about a population of Arctic tundra caribou. *Arctic* 50: 17-28.

Fischer, C.A. and E.A. Duncan. 1976. Ecological studies of caribou and muskoxen in the arctic archipelago of northern Keewatin. Renewable Resources Consulting Service Ltd., Edmonton, AB. Prepared for Polar Gas Environmental Program. 194 pp.

Fischer, C.A., D.C. Thompson, R.W. Wooley and P.S. Thompson. 1977. Ecological studies of caribou on the Boothia Peninsula and in the District of Keewatin, NWT, 1976. Renewable Resources Consulting Service Ltd., Edmonton, AB. Prepared for Polar Gas Environmental Program. 239 pp.

Fleischman, S.J. 1990. Lichen availability on the range of an expanding caribou (*Rangifer tarandus*) population in Alaska. MS thesis, University of Alaska, Fairbanks Alaska, 81pp.

Griffith, B., A. Gunn, D. Russell, and K. Kielland. In Press. Bathurst caribou calving ground studies: influence of nutrition and human activity on calving ground location. 1999 Annual Report submitted to West Kitikmeot Slave Study Society, Yellowknife, Northwest Territories.

Gunn, A. 1984. Sex and age composition of the Beverly herd of barren-ground caribou in the fall of 1981 and 1982. Department of Renewable Resources, Government of the Northwest Territories, File Report No. 40. 34 pp.

Gunn, A. 1996. Caribou distribution on the Bathurst calving ground, NWT, June 1995. Department of Renewable Resources, Government of the Northwest Territories, Manuscript Report No. 87. 16 pp.

Gunn, A. and R. Case. 1984. Numbers and distribution of muskoxen in the Queen Maud Gulf area, July 1982. Department of Renewable Resources, Government of the Northwest Territories, File Report No. 39. 56 pp.

Gunn, A and M. Sutherland. 1997a. Muskox diet and sex-age composition in the central arctic coastal mainland (Queen Maud Gulf area) 1988 - 1991. Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, Manuscript Report No. 95. 67pp.

Gunn, A. and M. Sutherland. 1997b. Surveys of the Beverly caribou calving ground, NWT, 1957-1994. Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, File Report No. 120. 119 pp.

Gunn, A. and B. Fournier. 2000. Data compilation on caribou calving ground locations as a baseline for managing human activities, NWT . Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, File Report No. 123. 175 pp.

Gunn, A., A. Buchan, B. Fournier and J. Nishi. 1997a. Victoria Island caribou migrations across Dolphin and Union Strait and Coronation Gulf from the Mainland Coast, 1976-94. Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, Manuscript Report No. 94. 74 pp.

Gunn, A., J. Dragon and J. Nishi . 1997b. Bathurst calving ground survey 1996. Department of Wildlife, Resources and Economic Development, Government of the Northwest Territories, File Report 119. 70pp.

Heard, D.C. 1985. Caribou census methods used in the Northwest Territories. McGill Subarctic Research Papers No. 40: 229-238.

Heard, D.C., T.M. Williams and K. Jingfors. 1987. Precalving distribution and abundance of barren-ground caribou on the Northeast mainland of the Northwest Territories. Department of Renewable Resources, Government of the Northwest Territories, File Report No. 71. 28 pp.

Jefferies, R. L. 1999. Herbivores, nutrients and trophic cascades in terrestrial environments. Pages 301-330. *In* eds H. Olff, V. K. Brown and R. H. Drent. *Herbivores: between plants and predators*. Blackwell Science, Oxford, United Kingdom, 639pp.

Jefferies, R.L., J. Svoboda, G. Henry, M. Raillard and R. Ruess. 1992. Tundra grazing systems and climatic change. Pages 391-412. In F.S. Chapin, R.L. Jefferies, J.F. Reynolds, G.R. Shaver, J. Svoboda and E.W. Chu. Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press Inc., New York, NY.

Jolly, G.M. 1969. Sampling method for aerial census of wildlife populations. *East African Agricultural and Forestry Journal* 34: 46-49.

Kelsall, J. 1968. The migratory barren-ground caribou of Canada. *Canadian Wildlife Service Monograph*, Ottawa, ON.

McNaughton, S.T. and F. F. Banyikwa. 1995. Plant communities and herbivory. In: *Serengeti II: Dynamics, Management, and Conservation of an Ecosystem*. (Ed. By A.R.E. Sinclair and P Arcese) Cambridge University Press, Cambridge. Pp 49-70.

Rescan Environmental Services Ltd. 1999. BHP Diamonds Inc. Hope Bay Belt Project – 1998 Environmental Data Report. Unpublished report submitted to BHP Minerals International Inc., by Rescan Environmental Services Ltd., Yellowknife, NWT. 61pp.

Ross, I. 1997. Caribou surveys in the Hope Bay Belt areas. Unpublished report submitted to BHP Minerals International Inc., by Arc Wildlife Services, Calgary Alberta. 13pp.

Russell, D.R., A.M. Martell and W. Nixon. 1993. Range ecology of the Porcupine Caribou Herd in Canada. *Rangifer Special Issue* No. 8.

Sutherland, M. and A. Gunn. 1996. Bathurst calving ground surveys, 1965-1996. Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories, File Report No. 118. 97 pp.

Thing, H. and B. Clausen. 1980. Summer mortality among caribou calves in Greenland. Pages 434-437 In Reimers, E. and Skjennberg, S. (eds). *Proc. 2nd Int. Reindeer/Caribou Symp.*, Røros, Norway, Direktoratet for vilt og ferskvannsfisk, Trondheim, Norway.

Thomas, D. C. 1969. Population estimates and distribution of barren-ground caribou in the Mackenzie District, N.W.T., Saskatchewan, and Alberta—March to May, 1967. Canadian Wildlife Service Report Series No. 9. 44 pp.

van der Wal, R., J. Irvine, A. Stien, N. Shepherd, and S.D. Albon. In Press.. Faecal avoidance and the risk of infection by nematodes in a natural herbivore population. *Parasitology*.

**APPENDIX A. Caribou observations and transect areas for June 1986 and 1996 aerial survey, Queen Maud Gulf area, Nunavut/NWT.**

| Transect<br>1986 Date | Area km <sup>2</sup> | On-transect<br>Caribou | Calves      |
|-----------------------|----------------------|------------------------|-------------|
| 1 June 6              | 57.6                 | 0                      | 0           |
| 2                     | 57.6                 | 0                      | 0           |
| 3                     | 134.4                | 0                      | 0           |
| 4                     | 166.4                | 0                      | 0           |
| 5                     | 224.0                | 6                      | 0           |
| 6                     | 160.0                | 0                      | 0           |
| 7                     | 217.6                | 0                      | 0           |
| 8                     | 57.6                 | 27                     | 0           |
| 9                     | 19.2                 | 0                      | 0           |
| 10                    | 76.8                 | 0                      | 0           |
| 11 June 8             | 89.6                 | 0                      | 0           |
| 12                    | 89.6                 | 0                      | 0           |
| 13                    | 198.4                | 20                     | 0           |
| 14                    | 172.8                | 17                     | 0           |
| 15                    | 204.8                | 21                     | 0           |
| 16                    | 185.6                | 14                     | 2           |
| 17                    | 172.8                | 36                     | 13          |
| 18                    | 115.2                | 2                      | 0           |
| <b>Totals</b>         | <b>2400</b>          | <b>143</b>             | <b>15</b>   |
| 33 June 11            | 128                  | 67                     | 13          |
| 34                    | 102                  | 177                    | 114         |
| 35                    | 147                  | 144                    | 116         |
| 36                    | 141                  | 780                    | 754         |
| 37                    | 128                  | 129                    | 92          |
| 38                    | 134                  | 202                    | 159         |
| 39                    | 160                  | 89                     | 85          |
| 46 June 12            | 166                  | 357                    | 313         |
| 47                    | 141                  | 444                    | 427         |
| 48                    | 147                  | 346                    | 314         |
| 49                    | 160                  | 19                     | 15          |
| 50                    | 256                  | 17                     | 3           |
| 51                    | 83                   | 39                     | 31          |
| 52                    | 83                   | 45                     | 39          |
| <b>Totals</b>         | <b>1976</b>          | <b>2855</b>            | <b>2475</b> |

## APPENDIX A (cont.).

| Transect<br>1996 | Transect<br>length (km) | Transect<br>area (km <sup>2</sup> ) | On-transect<br>Caribou | Calves |
|------------------|-------------------------|-------------------------------------|------------------------|--------|
| 1                | 77.0                    | 61.6                                | 136                    | 9      |
| 2                | not flown               |                                     |                        |        |
| 3                | 77.5                    | 62.0                                | 198                    | 8      |
| 4                | 78.0                    | 62.4                                | 154                    | 15     |
| 5                | 78.3                    | 62.6                                | 41                     | 0      |
| 6                | 52.5                    | 42.0                                | 27                     | 1      |
| 7                | 74.0                    | 59.2                                | 127                    | 55     |
| 8                | 113.0                   | 90.4                                | 871                    | 123    |
| 9                | 113.0                   | 90.4                                | 498                    | 100    |
| 10               | 114.0                   | 91.2                                | 387                    | 18     |
| 11               | 115.0                   | 92.0                                | 316                    | 17     |
| 12               | 148.0                   | 118.4                               | 717                    | 164    |
| 13               | 148.0                   | 118.4                               | 536                    | 60     |
| 14               | 149.0                   | 119.2                               | 329                    | 2      |
| 15               | 128.0                   | 102.4                               | 116                    | 1      |
| Total            | 1542.6                  | 1234.0                              | 4453                   | 573    |

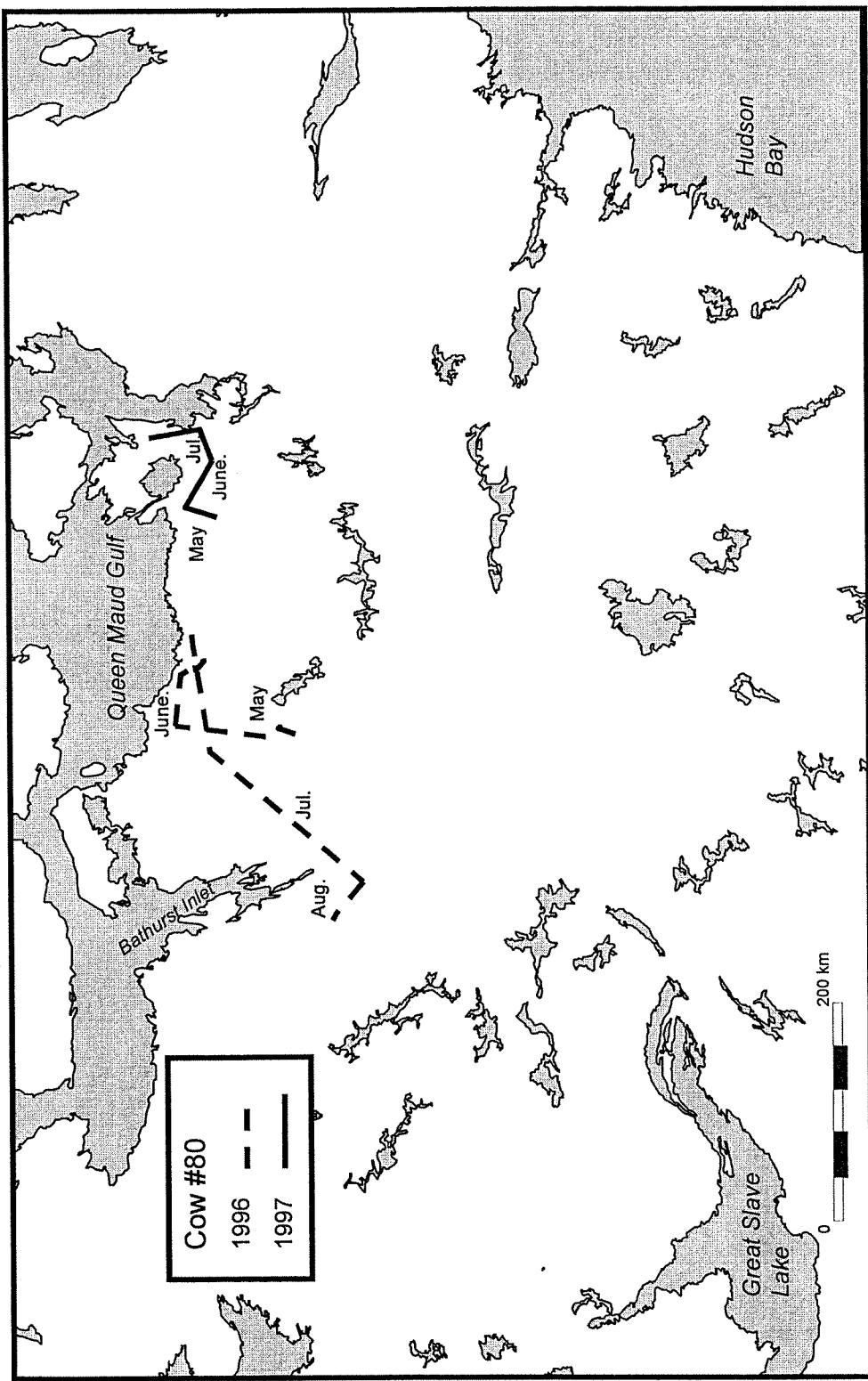
**APPENDIX B. Location accuracy associated with quality index codes for satellite transmitted locations.**

| quality index | location accuracy |
|---------------|-------------------|
| 3             | <150 m            |
| 2             | 150-300 m         |
| 1             | 350-1000 m        |
| 0             | >1000 m           |
| A             | 3 hits received   |
| B             | 2 hits received   |

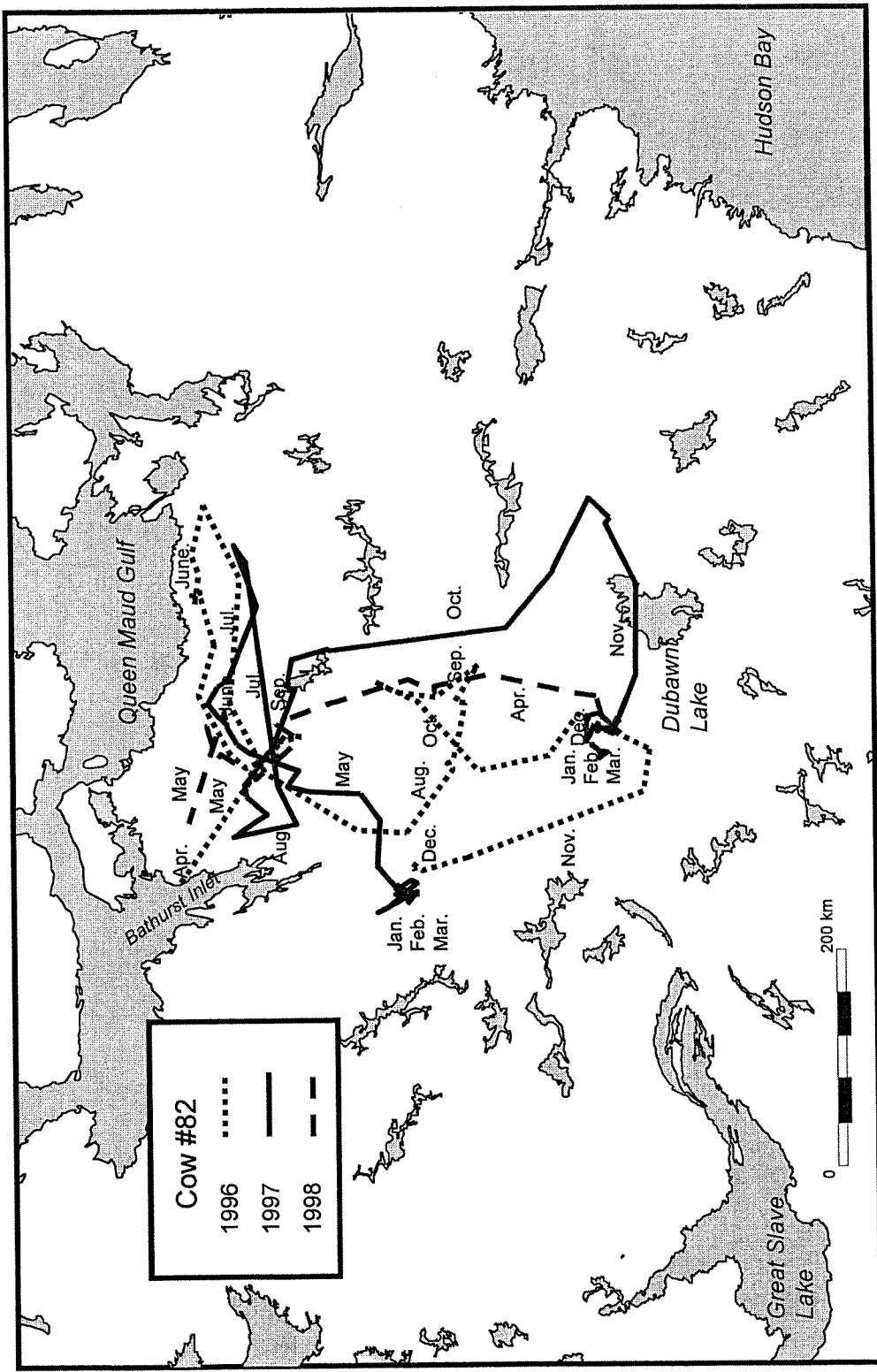
| Cow #80     | quality index |   |   |   |   |   |
|-------------|---------------|---|---|---|---|---|
|             | A             | B | 0 | 1 | 2 | 3 |
| Jan         |               |   |   |   |   |   |
| Feb         |               |   |   |   |   |   |
| Mar         |               |   |   |   |   |   |
| Apr         |               |   |   | 1 |   |   |
| May         |               |   | 2 | 1 | 2 |   |
| Jun         | 3             |   | 2 | 2 | 2 | 1 |
| Jul         |               | 1 | 2 | 2 |   |   |
| Aug         |               |   |   |   | 1 | 1 |
| Sep         |               | 1 |   |   |   |   |
| Oct         |               |   |   |   |   |   |
| Nov         |               |   |   |   |   |   |
| Dec         |               |   |   |   |   |   |
| total freq. | 3             | 2 | 6 | 6 | 5 | 2 |

## APPENDIX B (cont.).

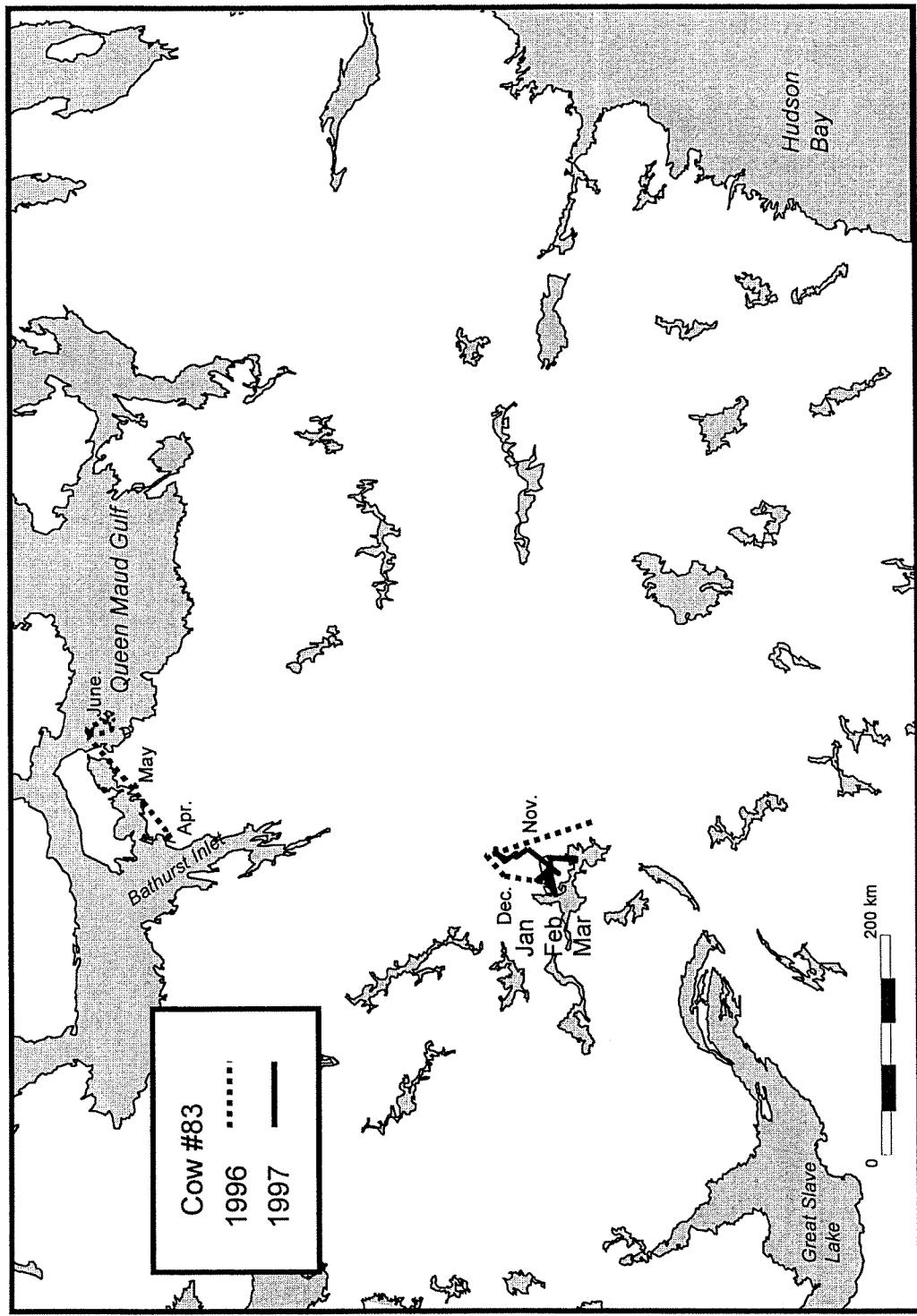
| Cow #82     | quality index |   |    |    |   |   |
|-------------|---------------|---|----|----|---|---|
|             | A             | B | 0  | 1  | 2 | 3 |
| Jan         | 3             | 1 | 2  | 2  |   |   |
| Feb         | 2             | 2 | 1  | 3  |   |   |
| Mar         | 1             |   | 1  | 3  |   | 1 |
| Apr         | 2             |   | 4  | 14 |   |   |
| May         | 2             |   | 5  | 8  | 3 |   |
| Jun         | 5             | 2 | 9  | 2  | 1 | 1 |
| Jul         | 3             |   | 7  | 3  |   |   |
| Aug         | 4             | 2 | 6  | 5  | 1 |   |
| Sep         | 2             |   | 4  | 7  | 1 | 1 |
| Oct         | 1             |   | 1  | 4  | 1 |   |
| Nov         | 2             | 1 | 1  | 1  |   |   |
| Dec         | 2             |   | 1  | 1  | 1 |   |
| total freq. | 29            | 7 | 42 | 53 | 8 | 3 |


| Cow #83     | quality index |    |    |    |   |   |
|-------------|---------------|----|----|----|---|---|
|             | A             | B  | 0  | 1  | 2 | 3 |
| Jan         |               | 1  | 1  | 3  | 1 | 1 |
| Feb         | 1             |    | 3  | 1  | 2 |   |
| Mar         | 2             |    | 2  | 3  | 1 |   |
| Apr         | 3             | 2  | 1  | 3  |   |   |
| May         | 3             | 1  | 3  | 8  | 1 |   |
| Jun         | 1             | 3  | 5  | 4  | 1 |   |
| Jul         | 2             | 2  | 1  | 2  |   |   |
| Aug         | 1             |    | 2  | 2  |   |   |
| Sep         | 2             |    | 1  |    |   | 1 |
| Oct         |               |    |    |    |   |   |
| Nov         | 1             | 1  | 1  |    | 1 | 1 |
| Dec         | 1             |    | 1  |    | 2 |   |
| total freq. | 17            | 10 | 21 | 26 | 9 | 3 |

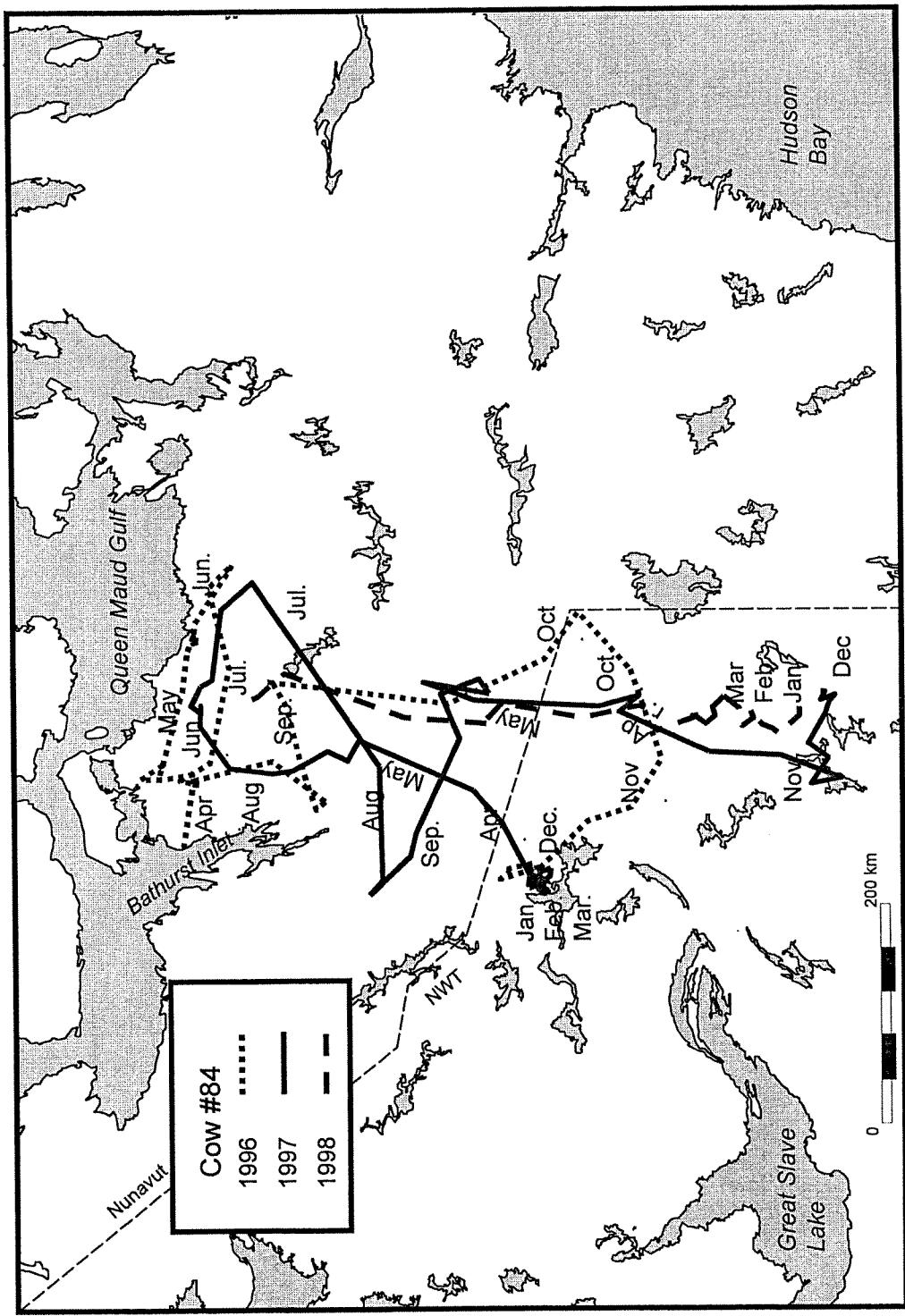
## APPENDIX B (cont.).


| Cow #84     | quality index |   |    |    |    |   |
|-------------|---------------|---|----|----|----|---|
|             | A             | B | 0  | 1  | 2  | 3 |
| Jan         |               |   | 1  | 4  | 2  |   |
| Feb         |               |   | 3  | 2  |    |   |
| Mar         | 1             |   |    | 3  | 1  | 1 |
| Apr         |               |   | 1  | 4  | 3  |   |
| May         | 1             |   | 1  | 9  | 2  | 1 |
| Jun         | 1             |   | 2  | 5  | 2  | 2 |
| Jul         | 2             |   | 2  | 5  | 3  |   |
| Aug         | 5             |   | 3  | 1  | 2  |   |
| Sep         |               |   | 2  | 3  | 5  | 2 |
| Oct         | 1             |   |    | 3  | 2  |   |
| Nov         |               |   |    | 3  | 2  | 1 |
| Dec         |               |   |    | 4  | 1  | 1 |
| total freq. | 11            |   | 15 | 46 | 25 | 8 |

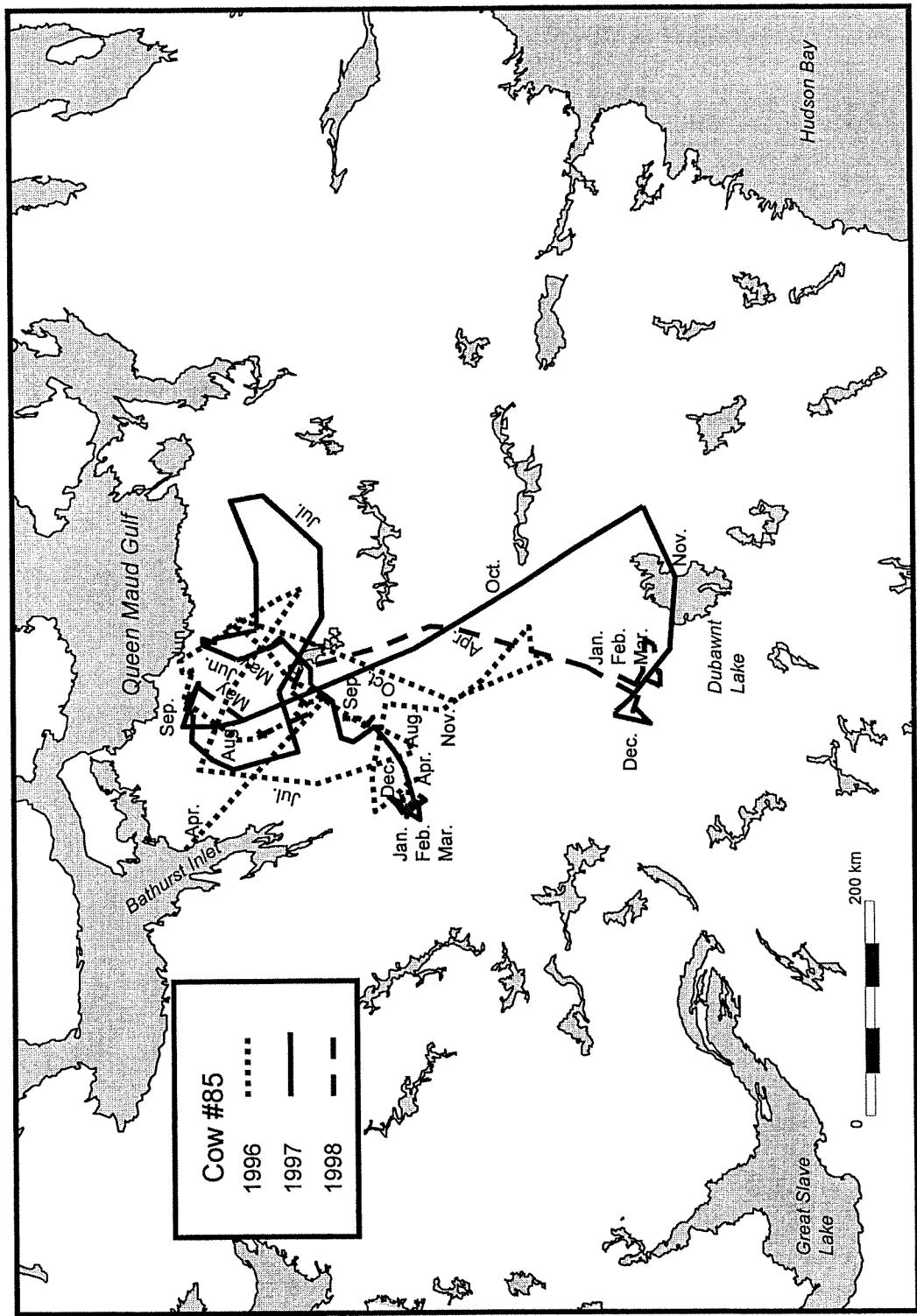
| Cow #85     | quality index |   |   |    |    |    |
|-------------|---------------|---|---|----|----|----|
|             | A             | B | 0 | 1  | 2  | 3  |
| Jan         | 1             |   | 1 | 3  | 2  |    |
| Feb         |               |   | 3 | 1  | 1  |    |
| Mar         |               | 1 |   | 5  |    |    |
| Apr         |               |   |   | 5  | 1  | 2  |
| May         | 1             |   |   | 7  | 4  | 2  |
| Jun         | 1             |   | 1 | 2  | 5  | 3  |
| Jul         |               |   |   | 5  | 3  | 4  |
| Aug         | 1             |   |   | 7  | 4  |    |
| Sep         | 1             |   | 1 | 6  | 2  | 1  |
| Oct         |               |   |   | 1  | 3  | 1  |
| Nov         |               |   |   | 2  | 4  |    |
| Dec         |               |   |   | 2  | 2  | 2  |
| total freq. | 5             | 1 | 6 | 46 | 31 | 15 |


Appendix C. Maps of seasonal movements for individual collared caribou cows between 1996 and 1998, Queen Maud Gulf area, Nunavut/NWT.

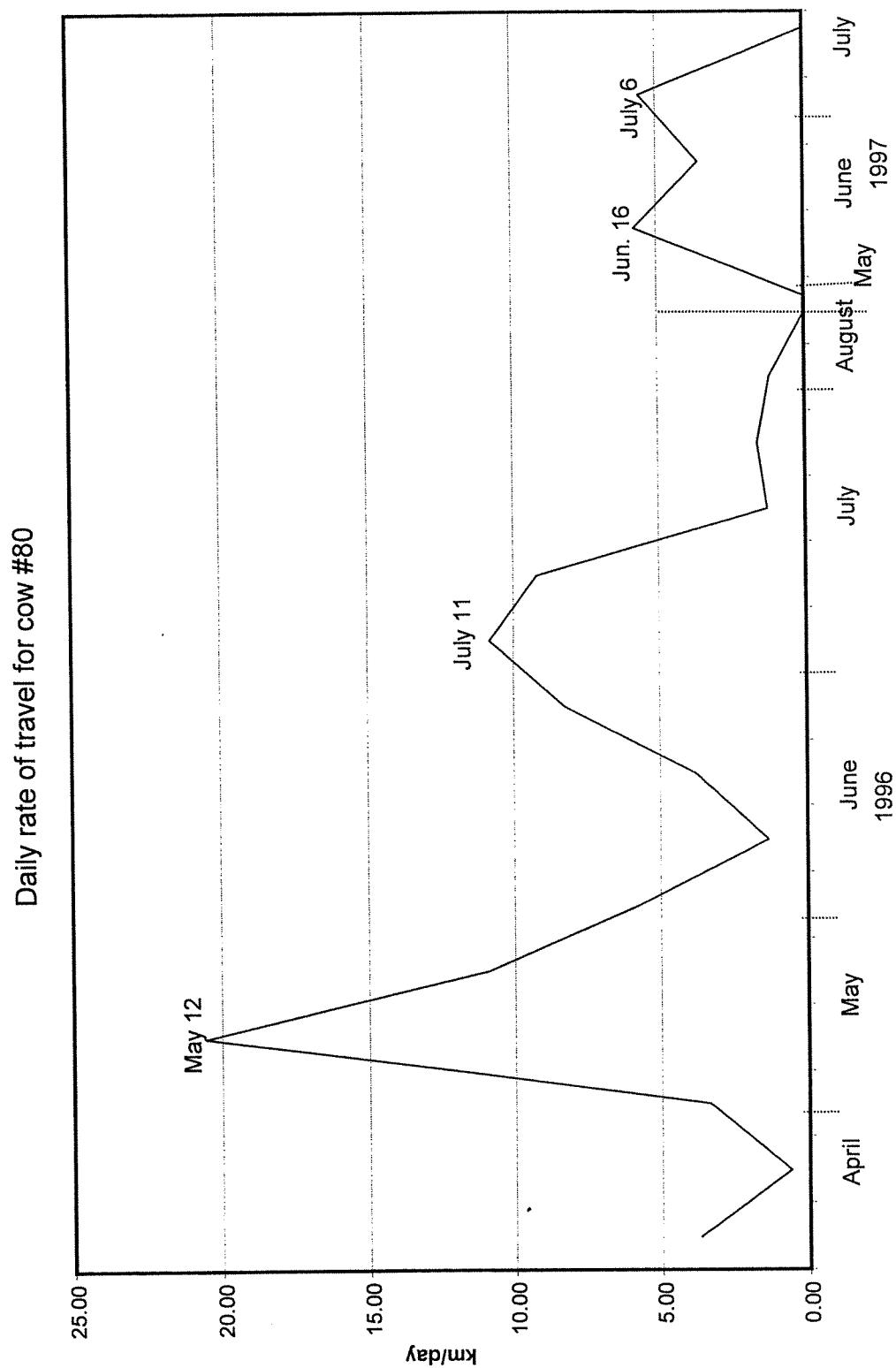



Appendix C. (cont'd.) Seasonal movements of cow #82.

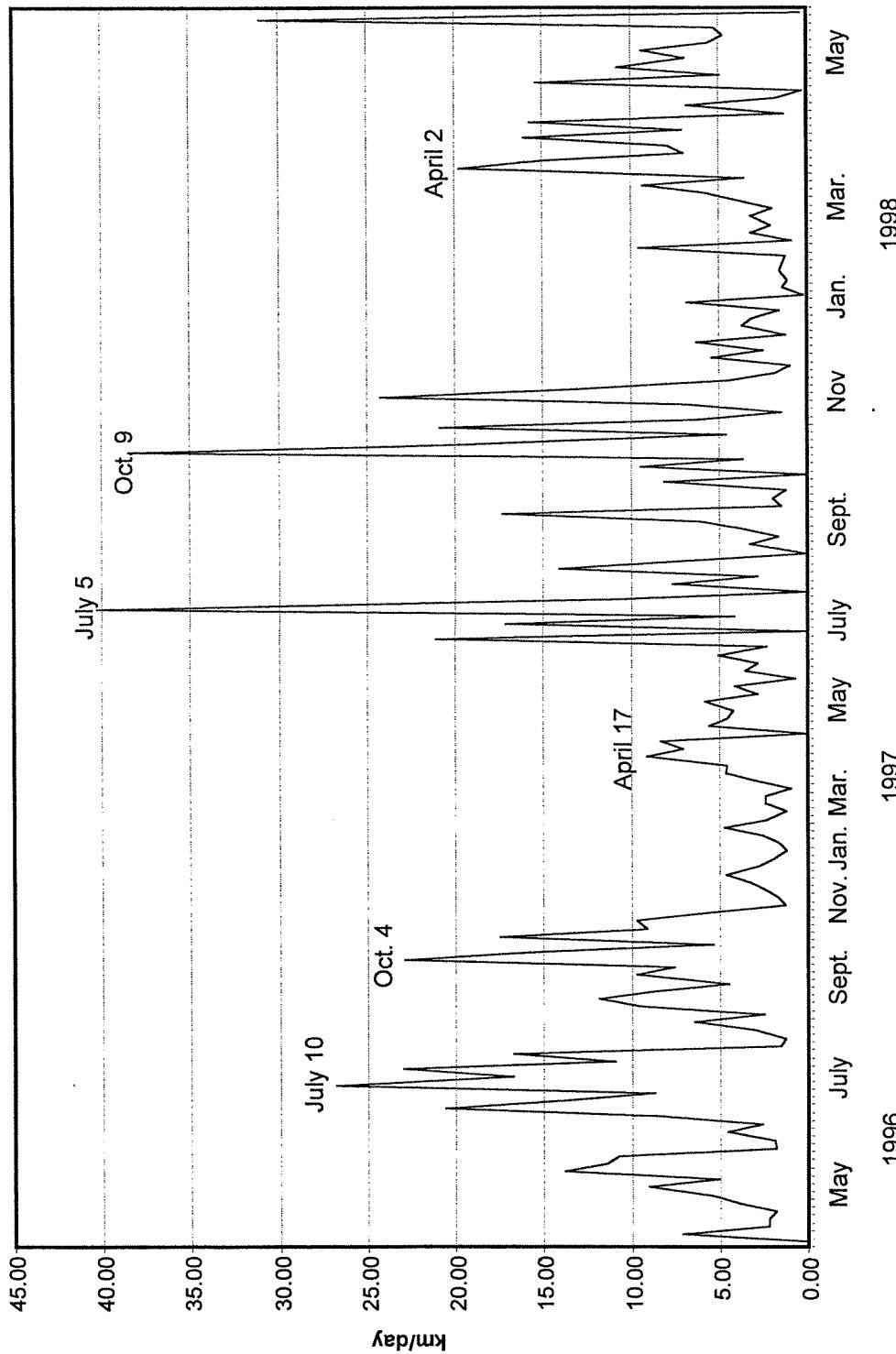
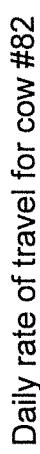



Appendix C. (cont'd.) Seasonal movements of COW #83.



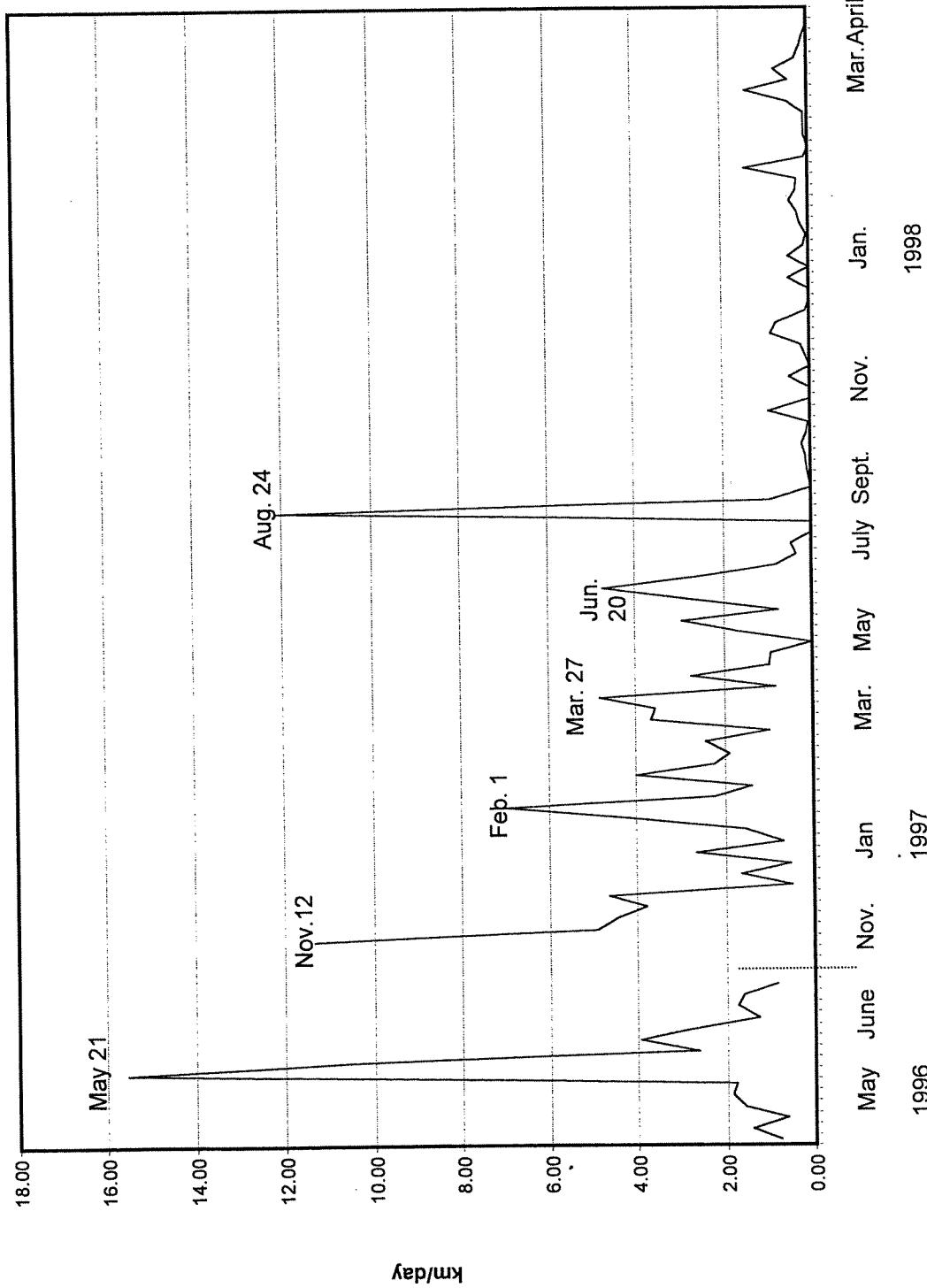

Appendix C. (cont'd.) Seasonal movements of cow #84.





Appendix C. (cont'd.) Seasonal movements of cow #85.

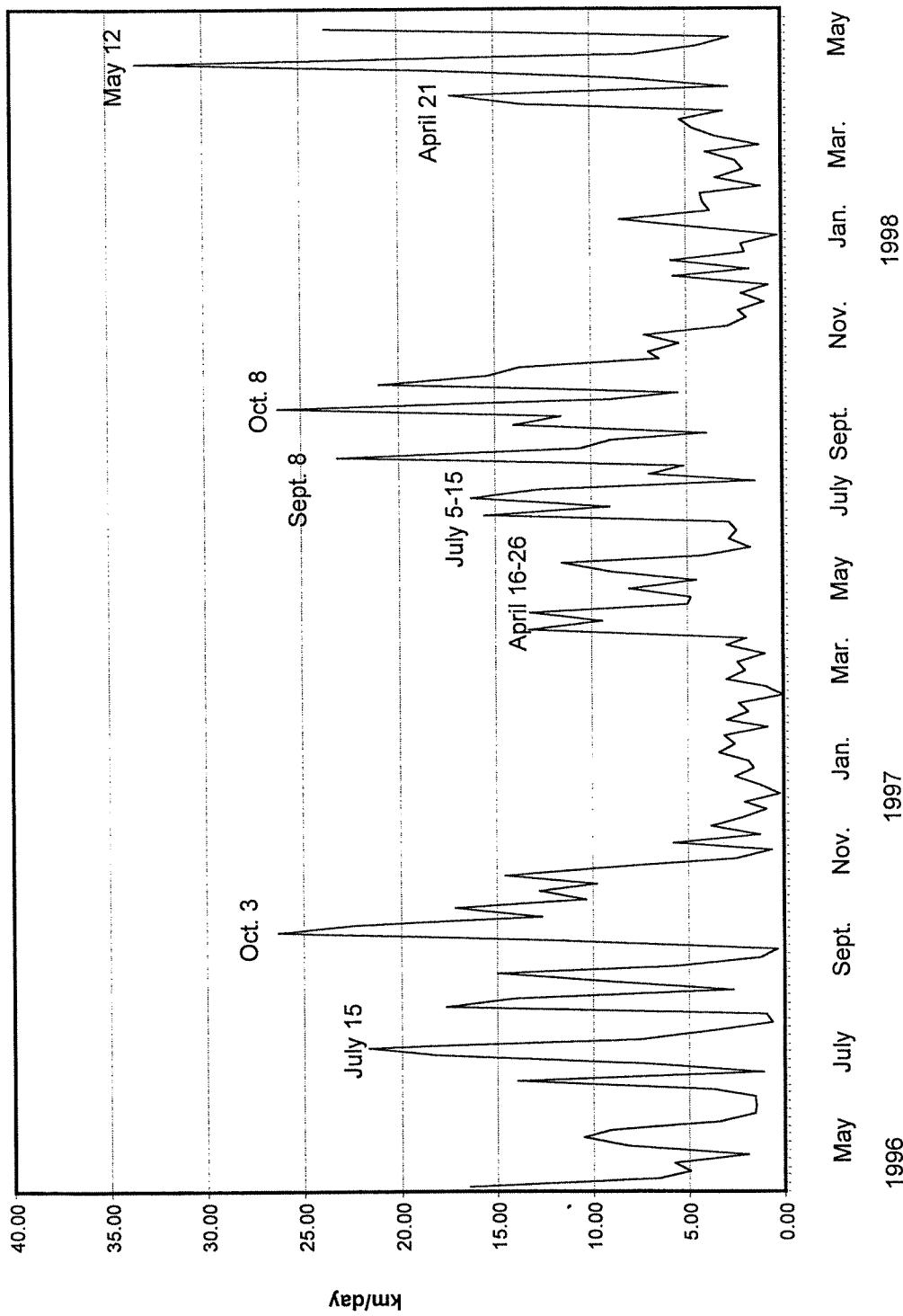


APPENDIX D. Daily rate of travel for individual satellite collared caribou cows in the Queen Maud Gulf area, 1996-98



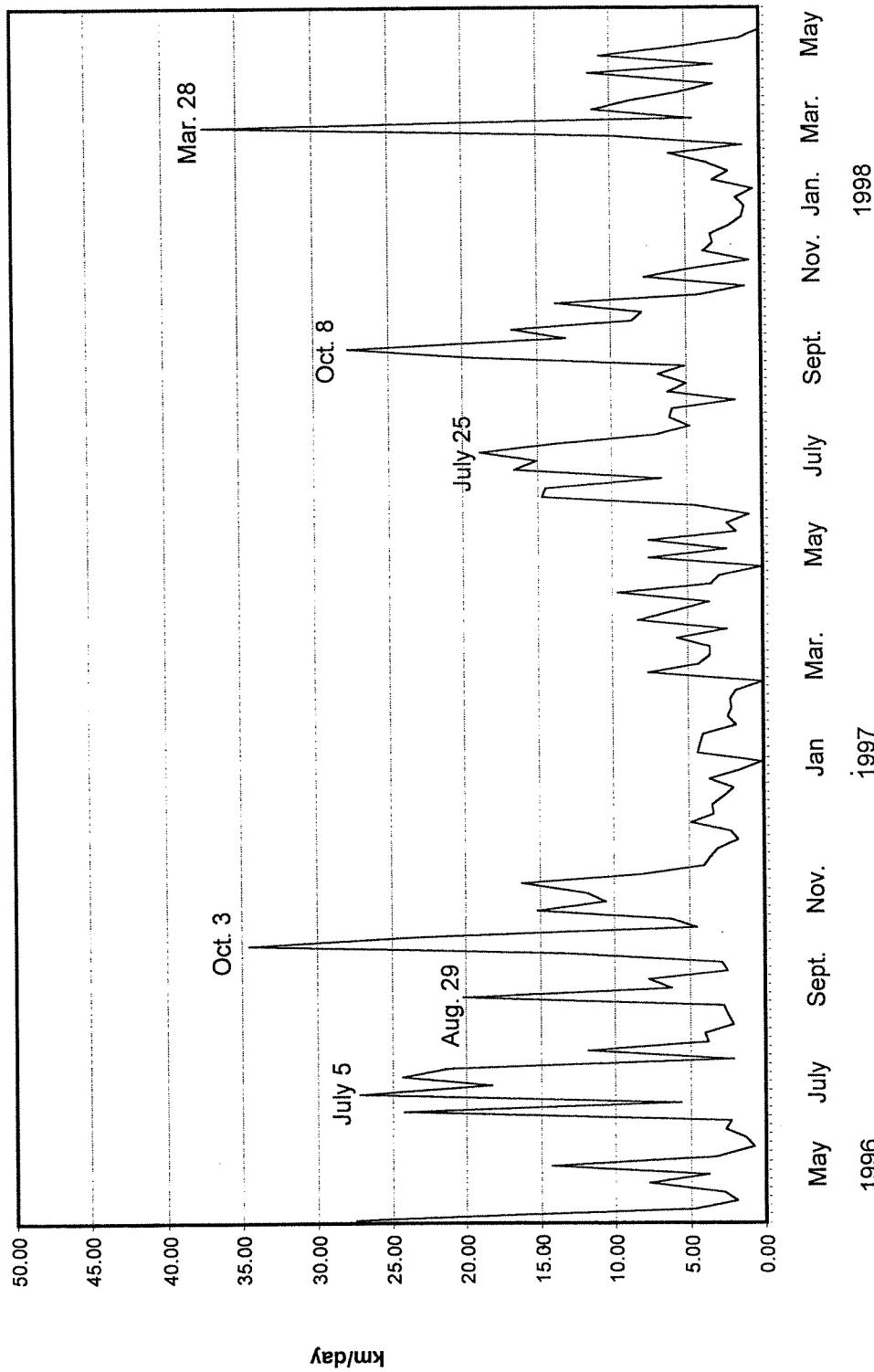

## Appendix D. (cont'd)



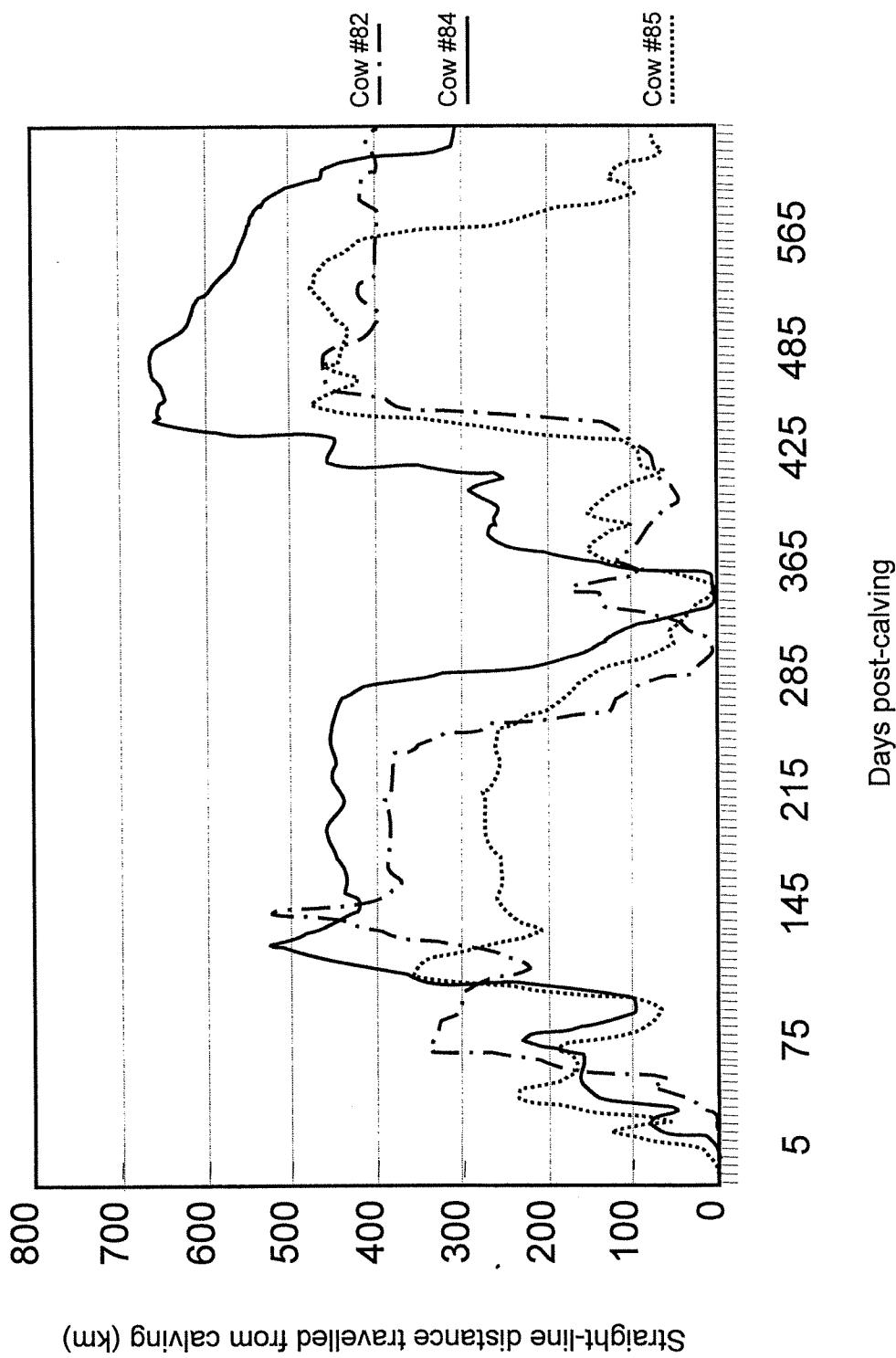

## Appendix D. (cont'd)

Daily rate of travel for cow #83




## Appendix D. (cont'd)

Daily rate of travel for cow #84




## Appendix D. (cont'd)

Daily rate of travel for cow #85



Appendix E. Straight-line distances travelled from calving for cows #82, #84, #85.



**APPENDIX F. Satellite location data for the Queen Maud Gulf caribou.**

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 80  | 1     | 4     | 1996 | 27  | 66.58 | 104.00 | -        |
| 80  | 2     | 5     | 1996 | 2   | 66.74 | 103.87 | 18.69    |
| 80  | 1     | 5     | 1996 | 7   | 66.72 | 103.82 | 3.12     |
| 80  | 0     | 5     | 1996 | 12  | 66.83 | 104.09 | 17.02    |
| 80  | 2     | 5     | 1996 | 27  | 67.75 | 103.87 | 102.71   |
| 80  | 0     | 6     | 1996 | 1   | 67.70 | 102.58 | 54.64    |
| 80  | 2     | 6     | 1996 | 6   | 67.48 | 102.22 | 28.83    |
| 80  | 2     | 6     | 1996 | 16  | 67.55 | 102.48 | 13.52    |
| 80  | 1     | 6     | 1996 | 26  | 67.59 | 101.59 | 38.01    |
| 80  | 1     | 7     | 1996 | 11  | 67.41 | 104.47 | 124.13   |
| 80  | 1     | 7     | 1996 | 31  | 65.85 | 107.41 | 216.47   |
| 80  | 3     | 8     | 1996 | 5   | 66.10 | 108.22 | 46.00    |
| 80  | 2     | 8     | 1996 | 10  | 66.13 | 108.34 | 6.35     |
| 80  | 0     | 5     | 1997 | 12  | 67.30 | 98.70  | 442.62   |
| 80  | 0     | 6     | 1997 | 11  | 67.60 | 98.40  | 35.72    |
| 80  | 1     | 6     | 1997 | 16  | 67.60 | 98.40  | 0.00     |
| 80  | 3     | 6     | 1997 | 26  | 67.30 | 97.30  | 57.54    |
| 80  | 0     | 7     | 1997 | 6   | 67.40 | 96.50  | 36.01    |
| 80  | 0     | 7     | 1997 | 16  | 67.90 | 96.60  | 55.74    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 82  | 1     | 4     | 1996 | 21  | 67.69 | 107.92 | -        |
| 82  | 0     | 4     | 1996 | 22  | 66.83 | 104.33 | 181.45   |
| 82  | 1     | 4     | 1996 | 26  | 66.58 | 104.19 | 28.46    |
| 82  | 1     | 5     | 1996 | 1   | 66.68 | 104.16 | 11.20    |
| 82  | 0     | 5     | 1996 | 2   | 66.68 | 104.21 | 2.20     |
| 82  | 2     | 5     | 1996 | 6   | 66.74 | 104.14 | 7.35     |
| 82  | 1     | 5     | 1996 | 11  | 66.84 | 104.50 | 19.30    |
| 82  | 0     | 5     | 1996 | 12  | 66.82 | 104.61 | 5.30     |
| 82  | 2     | 5     | 1996 | 16  | 67.11 | 104.98 | 36.03    |
| 82  | 1     | 5     | 1996 | 21  | 67.29 | 104.62 | 25.32    |
| 82  | 2     | 5     | 1996 | 26  | 67.59 | 103.20 | 69.13    |
| 82  | 1     | 5     | 1996 | 31  | 67.43 | 101.92 | 57.26    |
| 82  | 2     | 6     | 1996 | 5   | 67.56 | 100.71 | 53.47    |
| 82  | 0     | 6     | 1996 | 10  | 67.64 | 100.68 | 8.98     |
| 82  | 0     | 6     | 1996 | 15  | 67.56 | 100.60 | 9.52     |
| 82  | 0     | 6     | 1996 | 16  | 67.60 | 100.62 | 4.53     |
| 82  | 0     | 6     | 1996 | 21  | 67.62 | 100.92 | 12.90    |
| 82  | 1     | 6     | 1996 | 25  | 67.56 | 100.15 | 33.31    |
| 82  | 0     | 6     | 1996 | 26  | 67.63 | 99.70  | 20.59    |
| 82  | 1     | 6     | 1996 | 30  | 67.48 | 98.44  | 56.02    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 82  | 0     | 7     | 1996 | 10  | 67.16 | 100.29 | 86.91    |
| 82  | 1     | 7     | 1996 | 15  | 67.28 | 103.39 | 134.08   |
| 82  | 1     | 7     | 1996 | 20  | 66.92 | 105.09 | 83.72    |
| 82  | 0     | 7     | 1996 | 25  | 66.02 | 106.37 | 115.05   |
| 82  | 0     | 7     | 1996 | 30  | 65.53 | 106.35 | 54.48    |
| 82  | 1     | 8     | 1996 | 4   | 65.11 | 104.85 | 83.83    |
| 82  | 0     | 8     | 1996 | 9   | 65.16 | 104.73 | 7.90     |
| 82  | 0     | 8     | 1996 | 14  | 65.11 | 104.67 | 6.23     |
| 82  | 0     | 8     | 1996 | 24  | 65.04 | 104.03 | 30.98    |
| 82  | 1     | 8     | 1996 | 29  | 64.99 | 103.35 | 32.41    |
| 82  | 0     | 9     | 1996 | 3   | 65.10 | 103.32 | 12.31    |
| 82  | 0     | 9     | 1996 | 8   | 64.86 | 102.49 | 47.27    |
| 82  | 1     | 9     | 1996 | 18  | 65.29 | 103.23 | 59.05    |
| 82  | 1     | 9     | 1996 | 23  | 65.68 | 103.10 | 43.77    |
| 82  | 2     | 9     | 1996 | 28  | 65.86 | 102.89 | 22.19    |
| 82  | 1     | 10    | 1996 | 3   | 65.46 | 103.32 | 48.64    |
| 82  | 0     | 10    | 1996 | 4   | 65.41 | 103.43 | 7.53     |
| 82  | 1     | 10    | 1996 | 8   | 64.86 | 104.89 | 91.62    |
| 82  | 1     | 10    | 1996 | 13  | 64.17 | 104.49 | 79.05    |
| 82  | 2     | 10    | 1996 | 23  | 63.89 | 103.60 | 53.35    |
| 82  | 1     | 10    | 1996 | 28  | 63.17 | 104.32 | 87.63    |
| 82  | 1     | 11    | 1996 | 2   | 63.23 | 105.22 | 45.60    |
| 82  | 0     | 11    | 1996 | 23  | 64.92 | 106.86 | 204.06   |
| 82  | 2     | 12    | 1996 | 2   | 65.36 | 107.23 | 51.88    |
| 82  | 0     | 12    | 1996 | 12  | 65.46 | 107.08 | 13.10    |
| 82  | 1     | 12    | 1996 | 17  | 65.43 | 107.25 | 8.53     |
| 82  | 1     | 1     | 1997 | 1   | 65.48 | 108.03 | 36.45    |
| 82  | 1     | 1     | 1997 | 6   | 65.40 | 107.73 | 16.47    |
| 82  | 0     | 1     | 1997 | 16  | 65.75 | 108.29 | 46.65    |
| 82  | 0     | 1     | 1997 | 21  | 65.65 | 108.12 | 13.57    |
| 82  | 1     | 2     | 1997 | 10  | 65.41 | 107.53 | 38.08    |
| 82  | 1     | 2     | 1997 | 15  | 65.46 | 107.48 | 6.02     |
| 82  | 1     | 2     | 1997 | 20  | 65.52 | 107.58 | 8.11     |
| 82  | 0     | 2     | 1997 | 25  | 65.61 | 107.75 | 12.70    |
| 82  | 3     | 3     | 1997 | 2   | 65.40 | 107.80 | 23.46    |
| 82  | 1     | 3     | 1997 | 7   | 65.50 | 107.70 | 12.04    |
| 82  | 1     | 3     | 1997 | 17  | 65.60 | 107.80 | 12.03    |
| 82  | 1     | 3     | 1997 | 22  | 65.50 | 107.70 | 12.03    |
| 82  | 0     | 3     | 1997 | 27  | 65.60 | 107.60 | 12.03    |
| 82  | 1     | 4     | 1997 | 1   | 65.60 | 107.70 | 4.59     |
| 82  | 1     | 4     | 1997 | 6   | 65.50 | 107.90 | 14.43    |
| 82  | 1     | 4     | 1997 | 16  | 65.80 | 107.20 | 46.28    |
| 82  | 0     | 4     | 1997 | 17  | 65.80 | 107.10 | 4.56     |
| 82  | 0     | 4     | 1997 | 22  | 65.80 | 106.10 | 45.57    |
| 82  | 0     | 4     | 1997 | 27  | 66.00 | 105.50 | 35.16    |
| 82  | 1     | 5     | 1997 | 1   | 66.30 | 105.50 | 33.35    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 82  | 0     | 5     | 1997 | 2   | 66.30 | 105.50 | 0.00     |
| 82  | 1     | 5     | 1997 | 6   | 66.50 | 105.50 | 22.23    |
| 82  | 0     | 5     | 1997 | 11  | 66.70 | 105.40 | 22.67    |
| 82  | 0     | 5     | 1997 | 16  | 66.60 | 105.00 | 20.84    |
| 82  | 1     | 5     | 1997 | 26  | 67.10 | 104.60 | 58.27    |
| 82  | 1     | 5     | 1997 | 31  | 67.20 | 104.40 | 14.08    |
| 82  | 0     | 6     | 1997 | 5   | 67.30 | 104.00 | 20.48    |
| 82  | 0     | 6     | 1997 | 11  | 67.30 | 103.90 | 4.29     |
| 82  | 0     | 6     | 1997 | 15  | 67.40 | 103.70 | 14.03    |
| 82  | 0     | 6     | 1997 | 21  | 67.50 | 103.40 | 16.95    |
| 82  | 3     | 6     | 1997 | 25  | 67.40 | 103.00 | 20.36    |
| 82  | 0     | 7     | 1997 | 1   | 67.30 | 102.80 | 14.03    |
| 82  | 2     | 7     | 1997 | 5   | 67.00 | 101.00 | 84.55    |
| 82  | 0     | 7     | 1997 | 6   | 67.00 | 101.00 | 0.00     |
| 82  | 0     | 7     | 1997 | 10  | 67.20 | 99.50  | 68.59    |
| 82  | 1     | 7     | 1997 | 15  | 67.10 | 99.90  | 20.54    |
| 82  | 0     | 7     | 1997 | 31  | 66.80 | 105.40 | 241.62   |
| 82  | 1     | 8     | 1997 | 4   | 66.60 | 106.30 | 45.39    |
| 82  | 0     | 8     | 1997 | 5   | 66.60 | 106.30 | 0.00     |
| 82  | 1     | 8     | 1997 | 14  | 67.20 | 106.70 | 68.94    |
| 82  | 2     | 8     | 1997 | 24  | 67.00 | 106.30 | 28.17    |
| 82  | 0     | 8     | 1997 | 25  | 66.90 | 106.10 | 14.12    |
| 82  | 1     | 8     | 1997 | 29  | 67.10 | 105.70 | 28.22    |
| 82  | 0     | 8     | 1997 | 30  | 67.10 | 105.70 | 0.00     |
| 82  | 1     | 9     | 1997 | 3   | 67.13 | 105.41 | 12.97    |
| 82  | 0     | 9     | 1997 | 8   | 67.08 | 105.27 | 8.22     |
| 82  | 1     | 9     | 1997 | 18  | 66.91 | 104.57 | 35.80    |
| 82  | 1     | 9     | 1997 | 19  | 66.86 | 104.52 | 5.97     |
| 82  | 1     | 9     | 1997 | 23  | 66.64 | 103.04 | 69.40    |
| 82  | 1     | 9     | 1997 | 24  | 66.65 | 103.02 | 1.42     |
| 82  | 0     | 9     | 1997 | 28  | 66.72 | 103.01 | 7.79     |
| 82  | 3     | 9     | 1997 | 29  | 66.73 | 103.02 | 1.20     |
| 82  | 2     | 10    | 1997 | 3   | 66.67 | 102.30 | 32.35    |
| 82  | 1     | 10    | 1997 | 4   | 66.67 | 102.30 | 0.00     |
| 82  | 1     | 10    | 1997 | 8   | 66.34 | 102.10 | 37.74    |
| 82  | 1     | 10    | 1997 | 9   | 66.31 | 102.13 | 3.59     |
| 82  | 0     | 10    | 1997 | 14  | 64.59 | 101.68 | 192.33   |
| 82  | 1     | 10    | 1997 | 18  | 64.12 | 100.48 | 77.86    |
| 82  | 0     | 10    | 1997 | 19  | 64.11 | 100.39 | 4.51     |
| 82  | 0     | 10    | 1997 | 23  | 63.73 | 98.92  | 83.34    |
| 82  | 0     | 10    | 1997 | 28  | 63.53 | 99.37  | 31.43    |
| 82  | 0     | 11    | 1997 | 2   | 63.58 | 99.47  | 7.44     |
| 82  | 0     | 11    | 1997 | 13  | 63.30 | 100.81 | 73.52    |
| 82  | 1     | 11    | 1997 | 17  | 63.32 | 102.75 | 96.89    |
| 82  | 2     | 11    | 1997 | 22  | 63.54 | 103.99 | 66.33    |
| 82  | 1     | 11    | 1997 | 27  | 63.72 | 103.81 | 21.89    |
| 82  | 0     | 12    | 1997 | 3   | 63.76 | 104.01 | 10.80    |
| 82  | 1     | 12    | 1997 | 12  | 63.80 | 104.16 | 8.61     |
| 82  | 1     | 12    | 1997 | 17  | 63.80 | 103.61 | 26.99    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 82  | 0     | 12    | 1997 | 22  | 63.69 | 103.56 | 12.47    |
| 82  | 1     | 12    | 1997 | 27  | 63.48 | 103.98 | 31.25    |
| 82  | 1     | 12    | 1997 | 28  | 63.47 | 103.99 | 1.22     |
| 82  | 0     | 1     | 1998 | 7   | 63.69 | 104.54 | 36.58    |
| 82  | 2     | 1     | 1998 | 11  | 63.60 | 104.39 | 12.45    |
| 82  | 1     | 1     | 1998 | 16  | 63.67 | 104.39 | 7.78     |
| 82  | 0     | 1     | 1998 | 17  | 63.69 | 104.26 | 6.78     |
| 82  | 0     | 1     | 1998 | 27  | 63.68 | 104.28 | 1.49     |
| 82  | 0     | 1     | 1998 | 31  | 63.68 | 104.39 | 5.42     |
| 82  | 1     | 2     | 1998 | 5   | 63.66 | 104.49 | 5.41     |
| 82  | 1     | 2     | 1998 | 10  | 63.69 | 104.35 | 7.67     |
| 82  | 0     | 2     | 1998 | 16  | 63.75 | 104.25 | 8.29     |
| 82  | 2     | 2     | 1998 | 21  | 63.75 | 104.13 | 5.90     |
| 82  | 1     | 2     | 1998 | 25  | 63.47 | 103.69 | 37.97    |
| 82  | 3     | 3     | 1998 | 2   | 63.51 | 103.68 | 4.47     |
| 82  | 3     | 3     | 1998 | 7   | 63.57 | 103.97 | 15.84    |
| 82  | 0     | 3     | 1998 | 12  | 63.58 | 103.76 | 10.45    |
| 82  | 1     | 3     | 1998 | 17  | 63.70 | 103.93 | 15.76    |
| 82  | 0     | 3     | 1998 | 18  | 63.70 | 103.89 | 1.97     |
| 82  | 2     | 3     | 1998 | 22  | 63.56 | 103.87 | 15.59    |
| 82  | 0     | 3     | 1998 | 23  | 63.61 | 103.90 | 5.75     |
| 82  | 0     | 3     | 1998 | 27  | 63.71 | 103.18 | 37.21    |
| 82  | 0     | 4     | 1998 | 2   | 63.90 | 103.12 | 21.33    |
| 82  | 1     | 4     | 1998 | 7   | 64.77 | 102.70 | 98.81    |
| 82  | 1     | 4     | 1998 | 11  | 65.30 | 102.97 | 60.26    |
| 82  | 1     | 4     | 1998 | 12  | 65.30 | 103.12 | 6.97     |
| 82  | 0     | 4     | 1998 | 16  | 65.55 | 102.80 | 31.48    |
| 82  | 1     | 4     | 1998 | 21  | 66.24 | 103.31 | 80.12    |
| 82  | 0     | 4     | 1998 | 22  | 66.30 | 103.36 | 7.04     |
| 82  | 1     | 4     | 1998 | 26  | 66.83 | 103.85 | 62.77    |
| 82  | 2     | 4     | 1998 | 27  | 66.83 | 103.88 | 1.31     |
| 82  | 1     | 5     | 1998 | 1   | 66.63 | 104.23 | 27.03    |
| 82  | 1     | 5     | 1998 | 2   | 66.63 | 104.27 | 1.76     |
| 82  | 0     | 5     | 1998 | 7   | 66.62 | 104.28 | 1.20     |
| 82  | 0     | 5     | 1998 | 11  | 67.02 | 105.25 | 61.47    |
| 82  | 0     | 5     | 1998 | 12  | 67.03 | 105.14 | 4.90     |
| 82  | 1     | 5     | 1998 | 16  | 67.37 | 104.66 | 43.08    |
| 82  | 0     | 5     | 1998 | 17  | 67.40 | 104.80 | 6.85     |
| 82  | 1     | 5     | 1998 | 21  | 67.51 | 103.97 | 37.43    |
| 82  | 1     | 5     | 1998 | 22  | 67.46 | 103.99 | 5.62     |
| 82  | 0     | 5     | 1998 | 26  | 67.32 | 103.74 | 18.88    |
| 82  | 0     | 5     | 1998 | 27  | 67.33 | 103.62 | 5.26     |
| 82  | 3     | 5     | 1998 | 31  | 67.65 | 106.41 | 123.94   |
| 82  | 3     | 6     | 1998 | 1   | 67.66 | 106.38 | 1.69     |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 83  | 1     | 4     | 1996 | 16  | 67.78 | 107.83 | -        |
| 83  | 1     | 4     | 1996 | 26  | 67.85 | 107.81 | 7.83     |
| 83  | 1     | 5     | 1996 | 1   | 67.87 | 107.65 | 7.06     |
| 83  | A     | 5     | 1996 | 2   | 67.76 | 108.15 | 24.29    |
| 83  | 1     | 5     | 1996 | 6   | 67.86 | 107.72 | 21.20    |
| 83  | 0     | 5     | 1996 | 11  | 67.80 | 107.62 | 7.88     |
| 83  | 1     | 5     | 1996 | 16  | 67.87 | 107.74 | 9.27     |
| 83  | 1     | 5     | 1996 | 21  | 67.87 | 107.53 | 8.79     |
| 83  | 1     | 5     | 1996 | 26  | 68.33 | 106.12 | 77.67    |
| 83  | 2     | 5     | 1996 | 31  | 68.63 | 105.13 | 52.36    |
| 83  | 1     | 6     | 1996 | 5   | 68.58 | 104.84 | 13.01    |
| 83  | 1     | 6     | 1996 | 10  | 68.47 | 104.46 | 19.72    |
| 83  | 0     | 6     | 1996 | 15  | 68.44 | 104.79 | 13.88    |
| 83  | 2     | 6     | 1996 | 20  | 68.41 | 104.66 | 6.27     |
| 83  | B     | 6     | 1996 | 21  | 68.53 | 103.52 | 48.38    |
| 83  | 1     | 6     | 1996 | 25  | 68.48 | 104.57 | 43.13    |
| 83  | 0     | 6     | 1996 | 30  | 68.41 | 104.52 | 8.05     |
| 83  | 0     | 7     | 1996 | 10  | 68.48 | 104.43 | 8.61     |
| 83  | A     | 7     | 1996 | 15  | 68.48 | 104.39 | 1.63     |
| 83  | B     | 7     | 1996 | 20  | 68.42 | 104.39 | 6.67     |
| 83  | 3     | 11    | 1996 | 12  | 63.93 | 106.69 | 509.62   |
| 83  | A     | 11    | 1996 | 17  | 64.36 | 107.70 | 68.43    |
| 83  | 2     | 11    | 1996 | 22  | 64.87 | 107.61 | 56.86    |
| 83  | B     | 11    | 1996 | 27  | 64.94 | 106.50 | 52.91    |
| 83  | 0     | 11    | 1996 | 28  | 64.69 | 108.07 | 79.30    |
| 83  | A     | 12    | 1996 | 2   | 64.38 | 107.88 | 35.64    |
| 83  | 2     | 12    | 1996 | 7   | 64.29 | 108.14 | 16.03    |
| 83  | 0     | 12    | 1996 | 12  | 64.27 | 107.75 | 18.95    |
| 83  | 2     | 12    | 1996 | 17  | 64.31 | 108.22 | 23.10    |
| 83  | 1     | 1     | 1997 | 1   | 64.26 | 108.12 | 7.36     |
| 83  | 3     | 1     | 1997 | 6   | 64.32 | 108.02 | 8.23     |
| 83  | 2     | 1     | 1997 | 11  | 64.34 | 107.99 | 2.65     |
| 83  | 1     | 1     | 1997 | 16  | 64.38 | 107.73 | 13.27    |
| 83  | 1     | 1     | 1997 | 26  | 64.37 | 107.59 | 6.82     |
| 83  | B     | 1     | 1997 | 27  | 64.02 | 109.12 | 83.64    |
| 83  | 0     | 1     | 1997 | 31  | 64.31 | 107.51 | 84.39    |
| 83  | 0     | 2     | 1997 | 1   | 64.29 | 107.58 | 4.04     |
| 83  | 0     | 2     | 1997 | 5   | 64.04 | 107.53 | 27.90    |
| 83  | 1     | 2     | 1997 | 6   | 64.05 | 107.57 | 2.24     |
| 83  | 2     | 2     | 1997 | 10  | 64.10 | 107.56 | 5.58     |
| 83  | 0     | 2     | 1997 | 15  | 64.28 | 107.57 | 20.02    |
| 83  | 2     | 2     | 1997 | 20  | 64.29 | 107.80 | 11.15    |
| 83  | A     | 2     | 1997 | 25  | 64.41 | 107.75 | 13.56    |
| 83  | 1     | 3     | 1997 | 2   | 64.40 | 108.10 | 16.85    |
| 83  | 2     | 3     | 1997 | 7   | 64.30 | 108.00 | 12.11    |
| 83  | 1     | 3     | 1997 | 12  | 64.30 | 108.10 | 4.82     |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 83  | 0     | 3     | 1997 | 17  | 64.20 | 108.40 | 18.26    |
| 83  | A     | 3     | 1997 | 22  | 64.30 | 107.70 | 35.59    |
| 83  | A     | 3     | 1997 | 23  | 64.30 | 107.40 | 14.46    |
| 83  | 0     | 3     | 1997 | 27  | 64.30 | 107.70 | 14.46    |
| 83  | 1     | 3     | 1997 | 28  | 64.30 | 107.80 | 4.82     |
| 83  | A     | 4     | 1997 | 1   | 64.30 | 107.80 | 0.00     |
| 83  | A     | 4     | 1997 | 6   | 64.30 | 107.70 | 4.82     |
| 83  | 0     | 4     | 1997 | 11  | 64.20 | 107.90 | 14.73    |
| 83  | B     | 4     | 1997 | 16  | 64.20 | 108.30 | 19.35    |
| 83  | B     | 4     | 1997 | 21  | 64.30 | 107.60 | 35.59    |
| 83  | 1     | 4     | 1997 | 26  | 64.50 | 107.40 | 24.22    |
| 83  | A     | 4     | 1997 | 27  | 64.50 | 107.40 | 0.00     |
| 83  | A     | 5     | 1997 | 6   | 64.60 | 107.60 | 14.66    |
| 83  | 1     | 5     | 1997 | 11  | 64.60 | 107.60 | 0.00     |
| 83  | 0     | 5     | 1997 | 16  | 64.60 | 107.50 | 4.77     |
| 83  | 0     | 5     | 1997 | 17  | 64.60 | 107.50 | 0.00     |
| 83  | A     | 5     | 1997 | 21  | 64.60 | 107.80 | 14.30    |
| 83  | B     | 5     | 1997 | 22  | 64.70 | 107.40 | 22.05    |
| 83  | 1     | 5     | 1997 | 26  | 64.70 | 107.70 | 14.25    |
| 83  | 1     | 5     | 1997 | 31  | 64.80 | 107.50 | 14.61    |
| 83  | B     | 6     | 1997 | 5   | 64.70 | 107.30 | 14.61    |
| 83  | B     | 6     | 1997 | 10  | 64.80 | 107.50 | 14.61    |
| 83  | 0     | 6     | 1997 | 16  | 64.70 | 107.60 | 12.09    |
| 83  | 0     | 6     | 1997 | 20  | 64.80 | 107.60 | 11.12    |
| 83  | 1     | 6     | 1997 | 21  | 64.80 | 107.50 | 4.73     |
| 83  | 0     | 6     | 1997 | 26  | 64.70 | 107.60 | 12.09    |
| 83  | A     | 6     | 1997 | 30  | 64.80 | 107.50 | 12.09    |
| 83  | A     | 7     | 1997 | 5   | 64.80 | 107.50 | 0.00     |
| 83  | 1     | 7     | 1997 | 11  | 64.80 | 107.50 | 0.00     |
| 83  | 1     | 7     | 1997 | 25  | 64.80 | 107.60 | 4.73     |
| 83  | B     | 7     | 1997 | 30  | 64.80 | 107.40 | 9.47     |
| 83  | 1     | 8     | 1997 | 4   | 64.80 | 107.50 | 4.73     |
| 83  | 1     | 8     | 1997 | 5   | 64.80 | 107.50 | 0.00     |
| 83  | A     | 8     | 1997 | 14  | 64.80 | 107.50 | 0.00     |
| 83  | 0     | 8     | 1997 | 24  | 64.80 | 107.50 | 0.00     |
| 83  | 0     | 8     | 1997 | 25  | 64.70 | 107.60 | 12.09    |
| 83  | 3     | 9     | 1997 | 8   | 64.81 | 107.49 | 13.29    |
| 83  | 0     | 9     | 1997 | 18  | 64.81 | 107.49 | 0.00     |
| 83  | A     | 9     | 1997 | 28  | 64.81 | 107.45 | 1.89     |
| 83  | A     | 9     | 1997 | 29  | 64.80 | 107.45 | 1.11     |
| 83  | 2     | 10    | 1997 | 9   | 64.80 | 107.47 | 0.95     |
| 83  | A     | 10    | 1997 | 13  | 64.80 | 107.47 | 0.00     |
| 83  | 2     | 10    | 1997 | 14  | 64.80 | 107.48 | 0.47     |
| 83  | 2     | 10    | 1997 | 18  | 64.80 | 107.49 | 0.47     |
| 83  | 3     | 10    | 1997 | 23  | 64.80 | 107.47 | 0.95     |
| 83  | 3     | 10    | 1997 | 28  | 64.80 | 107.48 | 0.47     |
| 83  | A     | 11    | 1997 | 2   | 64.80 | 107.45 | 1.42     |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 83  | 3     | 11    | 1997 | 12  | 64.80 | 107.46 | 0.47     |
| 83  | 3     | 11    | 1997 | 13  | 64.80 | 107.48 | 0.95     |
| 83  | 3     | 11    | 1997 | 18  | 64.80 | 107.48 | 0.00     |
| 83  | 3     | 11    | 1997 | 22  | 64.80 | 107.48 | 0.00     |
| 83  | 3     | 11    | 1997 | 23  | 64.80 | 107.47 | 0.47     |
| 83  | 3     | 11    | 1997 | 28  | 64.80 | 107.47 | 0.00     |
| 83  | 2     | 12    | 1997 | 3   | 64.80 | 107.48 | 0.47     |
| 83  | B     | 12    | 1997 | 7   | 64.79 | 107.45 | 1.80     |
| 83  | 1     | 12    | 1997 | 8   | 64.80 | 107.50 | 2.62     |
| 83  | A     | 12    | 1997 | 12  | 64.80 | 107.49 | 0.47     |
| 83  | 1     | 12    | 1997 | 13  | 64.81 | 107.41 | 3.95     |
| 83  | 3     | 12    | 1997 | 17  | 64.80 | 107.47 | 3.05     |
| 83  | 3     | 12    | 1997 | 22  | 64.80 | 107.46 | 0.47     |
| 83  | 3     | 12    | 1997 | 27  | 64.80 | 107.46 | 0.00     |
| 83  | 3     | 1     | 1998 | 1   | 64.80 | 107.46 | 0.00     |
| 83  | 3     | 1     | 1998 | 2   | 64.80 | 107.47 | 0.47     |
| 83  | 3     | 1     | 1998 | 6   | 64.80 | 107.47 | 0.00     |
| 83  | 3     | 1     | 1998 | 7   | 64.80 | 107.48 | 0.47     |
| 83  | 3     | 1     | 1998 | 11  | 64.80 | 107.47 | 0.47     |
| 83  | 2     | 1     | 1998 | 17  | 64.80 | 107.48 | 0.47     |
| 83  | 3     | 1     | 1998 | 22  | 64.80 | 107.50 | 0.95     |
| 83  | 2     | 1     | 1998 | 27  | 64.79 | 107.51 | 1.21     |
| 83  | 1     | 2     | 1998 | 5   | 64.81 | 107.44 | 3.99     |
| 83  | 2     | 2     | 1998 | 10  | 64.80 | 107.46 | 1.46     |
| 83  | 2     | 2     | 1998 | 15  | 64.81 | 107.45 | 1.21     |
| 83  | 2     | 2     | 1998 | 16  | 64.80 | 107.47 | 1.46     |
| 83  | 3     | 2     | 1998 | 21  | 64.80 | 107.48 | 0.47     |
| 83  | 2     | 2     | 1998 | 26  | 64.80 | 107.48 | 0.00     |
| 83  | 3     | 3     | 1998 | 3   | 64.80 | 107.47 | 0.47     |
| 83  | 3     | 3     | 1998 | 8   | 64.80 | 107.48 | 0.47     |
| 83  | 1     | 3     | 1998 | 13  | 64.80 | 107.49 | 0.47     |
| 83  | 3     | 3     | 1998 | 17  | 64.80 | 107.45 | 1.89     |
| 83  | 2     | 3     | 1998 | 18  | 64.80 | 107.48 | 1.42     |
| 83  | 0     | 3     | 1998 | 23  | 64.79 | 107.52 | 2.20     |
| 83  | 1     | 3     | 1998 | 27  | 64.80 | 107.46 | 3.05     |
| 83  | 2     | 4     | 1998 | 1   | 64.81 | 107.44 | 1.46     |
| 83  | 3     | 4     | 1998 | 12  | 64.80 | 107.47 | 1.80     |
| 83  | 2     | 4     | 1998 | 17  | 64.80 | 107.48 | 0.47     |
| 83  | 3     | 4     | 1998 | 22  | 64.80 | 107.48 | 0.00     |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 84  | 2     | 4     | 1996 | 21  | 67.69 | 107.95 | -        |
| 84  | 1     | 4     | 1996 | 26  | 67.64 | 106.01 | 33.21    |
| 84  | 1     | 5     | 1996 | 1   | 67.93 | 106.20 | 24.46    |
| 84  | 2     | 5     | 1996 | 6   | 68.15 | 106.21 | 28.79    |
| 84  | 2     | 5     | 1996 | 11  | 67.95 | 105.77 | 9.66     |
| 84  | 3     | 5     | 1996 | 16  | 67.96 | 106.00 | 40.68    |
| 84  | 1     | 5     | 1996 | 21  | 67.88 | 105.05 | 52.37    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 84  | 0     | 5     | 1996 | 26  | 67.78 | 103.83 | 45.37    |
| 84  | 1     | 5     | 1996 | 31  | 67.73 | 102.76 | 17.36    |
| 84  | 2     | 6     | 1996 | 5   | 67.67 | 102.38 | 7.60     |
| 84  | 0     | 6     | 1996 | 10  | 67.67 | 102.56 | 7.30     |
| 84  | 1     | 6     | 1996 | 15  | 67.61 | 102.49 | 7.88     |
| 84  | 1     | 6     | 1996 | 20  | 67.68 | 102.46 | 18.72    |
| 84  | 1     | 6     | 1996 | 25  | 67.66 | 102.02 | 69.75    |
| 84  | 1     | 6     | 1996 | 30  | 67.31 | 100.66 | 5.61     |
| 84  | 1     | 7     | 1996 | 5   | 67.29 | 100.54 | 35.90    |
| 84  | 0     | 7     | 1996 | 10  | 67.52 | 101.13 | 90.82    |
| 84  | 0     | 7     | 1996 | 15  | 67.33 | 103.20 | 108.22   |
| 84  | 1     | 7     | 1996 | 20  | 67.49 | 105.70 | 37.63    |
| 84  | 2     | 7     | 1996 | 25  | 67.77 | 106.20 | 19.20    |
| 84  | 1     | 7     | 1996 | 30  | 67.60 | 106.28 | 3.33     |
| 84  | 0     | 8     | 1996 | 4   | 67.63 | 106.28 | 5.06     |
| 84  | 0     | 8     | 1996 | 9   | 67.66 | 106.19 | 17.81    |
| 84  | A     | 8     | 1996 | 14  | 67.61 | 106.59 | 10.90    |
| 84  | A     | 8     | 1996 | 19  | 67.54 | 106.41 | 79.42    |
| 84  | 1     | 8     | 1996 | 24  | 66.90 | 105.59 | 70.48    |
| 84  | 2     | 8     | 1996 | 29  | 66.39 | 106.54 | 13.22    |
| 84  | 1     | 9     | 1996 | 3   | 66.47 | 106.76 | 45.25    |
| 84  | 2     | 9     | 1996 | 8   | 66.61 | 105.80 | 74.83    |
| 84  | 0     | 9     | 1996 | 13  | 66.79 | 104.16 | 28.04    |
| 84  | 2     | 9     | 1996 | 18  | 66.92 | 103.61 | 6.34     |
| 84  | 2     | 9     | 1996 | 23  | 66.97 | 103.54 | 1.71     |
| 84  | 3     | 9     | 1996 | 28  | 66.96 | 103.57 | 58.09    |
| 84  | 1     | 10    | 1996 | 3   | 66.44 | 103.70 | 131.98   |
| 84  | 2     | 10    | 1996 | 8   | 65.26 | 104.02 | 112.29   |
| 84  | 1     | 10    | 1996 | 13  | 64.35 | 102.99 | 63.23    |
| 84  | 2     | 10    | 1996 | 18  | 64.03 | 101.91 | 85.76    |
| 84  | 1     | 10    | 1996 | 23  | 63.52 | 103.22 | 103.70   |
| 84  | A     | 10    | 1996 | 28  | 62.95 | 104.86 | 31.87    |
| 84  | 1     | 11    | 1996 | 2   | 63.20 | 105.17 | 63.86    |
| 84  | 1     | 11    | 1996 | 7   | 63.47 | 106.30 | 48.73    |
| 84  | 2     | 11    | 1996 | 12  | 63.88 | 106.65 | 72.80    |
| 84  | 1     | 11    | 1996 | 17  | 64.30 | 107.80 | 44.24    |
| 84  | 2     | 11    | 1996 | 22  | 64.67 | 108.14 | 12.69    |
| 84  | 3     | 11    | 1996 | 27  | 64.59 | 107.95 | 3.07     |
| 84  | 2     | 12    | 1996 | 2   | 64.60 | 107.89 | 28.96    |
| 84  | 1     | 12    | 1996 | 7   | 64.35 | 107.72 | 6.19     |
| 84  | 1     | 12    | 1996 | 12  | 64.33 | 107.84 | 18.98    |
| 84  | 1     | 12    | 1996 | 17  | 64.40 | 108.20 | 10.94    |
| 84  | 1     | 12    | 1996 | 22  | 64.33 | 108.04 | 4.41     |
| 84  | 3     | 12    | 1996 | 27  | 64.30 | 107.98 | 10.12    |
| 84  | 1     | 1     | 1997 | 1   | 64.22 | 108.08 | 1.11     |
| 84  | 2     | 1     | 1997 | 6   | 64.23 | 108.08 | 6.22     |
| 84  | 1     | 1     | 1997 | 11  | 64.19 | 108.17 | 12.69    |
| 84  | 1     | 1     | 1997 | 16  | 64.30 | 108.10 | 7.79     |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 84  | 2     | 1     | 1997 | 21  | 64.31 | 108.26 | 9.15     |
| 84  | 0     | 1     | 1997 | 26  | 64.38 | 108.36 | 16.82    |
| 84  | 1     | 1     | 1997 | 31  | 64.38 | 108.01 | 12.57    |
| 84  | 1     | 2     | 1997 | 5   | 64.27 | 108.07 | 15.61    |
| 84  | 0     | 2     | 1997 | 10  | 64.25 | 108.39 | 4.05     |
| 84  | 0     | 2     | 1997 | 15  | 64.23 | 108.32 | 14.84    |
| 84  | 1     | 2     | 1997 | 20  | 64.36 | 108.25 | 9.28     |
| 84  | 0     | 2     | 1997 | 25  | 64.33 | 108.07 | 11.57    |
| 84  | 1     | 3     | 1997 | 2   | 64.30 | 108.30 | 0.00     |
| 84  | 3     | 3     | 1997 | 7   | 64.30 | 108.30 | 0.00     |
| 84  | A     | 3     | 1997 | 12  | 64.30 | 108.30 | 4.82     |
| 84  | 2     | 3     | 1997 | 17  | 64.30 | 108.20 | 14.73    |
| 84  | 1     | 3     | 1997 | 22  | 64.20 | 108.00 | 9.68     |
| 84  | 1     | 3     | 1997 | 27  | 64.20 | 107.80 | 12.12    |
| 84  | 0     | 4     | 1997 | 1   | 64.30 | 107.90 | 4.82     |
| 84  | 2     | 4     | 1997 | 6   | 64.30 | 108.00 | 14.70    |
| 84  | 2     | 4     | 1997 | 11  | 64.40 | 108.20 | 9.61     |
| 84  | 1     | 4     | 1997 | 16  | 64.40 | 108.00 | 66.32    |
| 84  | 1     | 4     | 1997 | 21  | 64.70 | 106.80 | 46.97    |
| 84  | 1     | 4     | 1997 | 26  | 65.00 | 106.10 | 24.12    |
| 84  | A     | 5     | 1997 | 1   | 65.20 | 105.90 | 108.22   |
| 84  | 1     | 5     | 1997 | 6   | 66.10 | 105.00 | 25.07    |
| 84  | 1     | 5     | 1997 | 11  | 66.20 | 105.50 | 23.96    |
| 84  | 1     | 5     | 1997 | 16  | 66.40 | 105.30 | 40.02    |
| 84  | 1     | 5     | 1997 | 21  | 66.70 | 105.80 | 22.66    |
| 84  | 1     | 5     | 1997 | 26  | 66.90 | 105.90 | 44.68    |
| 84  | 1     | 5     | 1997 | 31  | 67.30 | 105.80 | 57.54    |
| 84  | 1     | 6     | 1997 | 5   | 67.60 | 104.70 | 21.18    |
| 84  | 3     | 6     | 1997 | 10  | 67.60 | 104.20 | 8.47     |
| 84  | 3     | 6     | 1997 | 15  | 67.60 | 104.40 | 13.97    |
| 84  | 2     | 6     | 1997 | 20  | 67.70 | 104.20 | 27.95    |
| 84  | A     | 6     | 1997 | 25  | 67.50 | 103.80 | 11.90    |
| 84  | 0     | 6     | 1997 | 30  | 67.60 | 103.70 | 13.99    |
| 84  | 2     | 7     | 1997 | 5   | 67.50 | 103.50 | 77.53    |
| 84  | 2     | 7     | 1997 | 10  | 67.40 | 101.70 | 44.92    |
| 84  | 1     | 7     | 1997 | 15  | 67.10 | 101.00 | 79.77    |
| 84  | A     | 7     | 1997 | 20  | 66.40 | 100.60 | 122.67   |
| 84  | A     | 7     | 1997 | 25  | 66.20 | 103.30 | 109.01   |
| 84  | 1     | 7     | 1997 | 30  | 65.90 | 105.60 | 80.30    |
| 84  | A     | 8     | 1997 | 4   | 65.60 | 107.20 | 59.23    |
| 84  | 2     | 8     | 1997 | 9   | 65.80 | 108.40 | 14.36    |
| 84  | A     | 8     | 1997 | 14  | 65.90 | 108.60 | 9.08     |
| 84  | 0     | 8     | 1997 | 24  | 65.90 | 108.80 | 33.72    |
| 84  | A     | 8     | 1997 | 29  | 65.80 | 108.10 | 32.55    |
| 84  | 2     | 9     | 1997 | 3   | 65.55 | 107.73 | 25.71    |
| 84  | 1     | 9     | 1997 | 8   | 65.51 | 107.18 | 115.68   |
| 84  | 0     | 9     | 1997 | 13  | 65.14 | 104.85 | 52.86    |
| 84  | 3     | 9     | 1997 | 18  | 65.34 | 103.82 | 44.61    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 84  | 1     | 9     | 1997 | 23  | 64.97 | 103.45 | 19.69    |
| 84  | 2     | 9     | 1997 | 28  | 64.88 | 103.81 | 70.06    |
| 84  | 2     | 10    | 1997 | 3   | 65.50 | 103.54 | 57.72    |
| 84  | 1     | 10    | 1997 | 8   | 65.01 | 103.95 | 131.25   |
| 84  | 0     | 10    | 1997 | 13  | 63.83 | 104.04 | 45.08    |
| 84  | 1     | 10    | 1997 | 18  | 63.44 | 103.79 | 27.14    |
| 84  | 0     | 10    | 1997 | 23  | 63.62 | 104.16 | 104.87   |
| 84  | 1     | 10    | 1997 | 28  | 62.76 | 105.02 | 76.71    |
| 84  | 1     | 11    | 1997 | 2   | 62.07 | 105.01 | 68.68    |
| 84  | 0     | 11    | 1997 | 7   | 61.49 | 105.46 | 32.12    |
| 84  | 1     | 11    | 1997 | 12  | 61.77 | 105.61 | 34.82    |
| 84  | 1     | 11    | 1997 | 17  | 61.62 | 105.03 | 26.68    |
| 84  | 3     | 11    | 1997 | 22  | 61.82 | 104.75 | 35.72    |
| 84  | 0     | 11    | 1997 | 27  | 61.70 | 104.12 | 4.45     |
| 84  | 0     | 11    | 1997 | 27  | 61.66 | 104.12 | 14.13    |
| 84  | 1     | 12    | 1997 | 2   | 61.63 | 103.86 | 9.26     |
| 84  | 1     | 12    | 1997 | 7   | 61.58 | 103.72 | 11.08    |
| 84  | 1     | 12    | 1997 | 12  | 61.67 | 103.81 | 4.57     |
| 84  | 0     | 12    | 1997 | 17  | 61.71 | 103.83 | 10.56    |
| 84  | 1     | 12    | 1997 | 22  | 61.68 | 103.64 | 3.50     |
| 84  | 0     | 12    | 1997 | 27  | 61.71 | 103.66 | 28.19    |
| 84  | 3     | 1     | 1998 | 1   | 61.91 | 103.99 | 8.37     |
| 84  | 2     | 1     | 1998 | 6   | 61.91 | 104.15 | 28.92    |
| 84  | 1     | 1     | 1998 | 11  | 62.09 | 104.55 | 9.36     |
| 84  | 1     | 1     | 1998 | 16  | 62.16 | 104.45 | 10.64    |
| 84  | 1     | 1     | 1998 | 21  | 62.25 | 104.38 | 1.23     |
| 84  | 1     | 1     | 1998 | 26  | 62.26 | 104.39 | 19.74    |
| 84  | 0     | 1     | 1998 | 31  | 62.37 | 104.09 | 8.43     |
| 84  | 1     | 2     | 1998 | 1   | 62.34 | 104.24 | 14.81    |
| 84  | 0     | 2     | 1998 | 5   | 62.44 | 104.43 | 20.32    |
| 84  | 1     | 2     | 1998 | 10  | 62.47 | 104.04 | 21.17    |
| 84  | 0     | 2     | 1998 | 25  | 62.61 | 103.76 | 1.22     |
| 84  | 1     | 2     | 1998 | 25  | 62.62 | 103.77 | 5.11     |
| 84  | 0     | 3     | 1998 | 2   | 62.64 | 103.68 | 5.11     |
| 84  | 0     | 3     | 1998 | 2   | 62.62 | 103.77 | 17.31    |
| 84  | 0     | 3     | 1998 | 7   | 62.73 | 104.01 | 9.76     |
| 84  | 0     | 3     | 1998 | 12  | 62.70 | 104.19 | 14.41    |
| 84  | 0     | 3     | 1998 | 18  | 62.80 | 104.37 | 15.77    |
| 84  | 0     | 3     | 1998 | 22  | 62.94 | 104.32 | 6.93     |
| 84  | 0     | 3     | 1998 | 22  | 62.91 | 104.20 | 1.11     |
| 84  | 1     | 3     | 1998 | 23  | 62.92 | 104.20 | 13.84    |
| 84  | 0     | 3     | 1998 | 27  | 62.94 | 103.93 | 15.29    |
| 84  | 0     | 3     | 1998 | 27  | 62.87 | 104.19 | 46.38    |
| 84  | 1     | 4     | 1998 | 6   | 63.25 | 104.57 | 26.52    |
| 84  | 1     | 4     | 1998 | 11  | 63.45 | 104.28 | 14.99    |
| 84  | 1     | 4     | 1998 | 16  | 63.40 | 104.00 | 67.46    |
| 84  | 1     | 4     | 1998 | 21  | 63.99 | 104.32 | 85.96    |
| 84  | 1     | 4     | 1998 | 26  | 64.75 | 103.99 | 27.07    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 84  | 0     | 5     | 1998 | 6   | 64.83 | 104.53 | 9.39     |
| 84  | 1     | 5     | 1998 | 6   | 64.89 | 104.39 | 7.91     |
| 84  | 0     | 5     | 1998 | 7   | 64.83 | 104.48 | 94.61    |
| 84  | 0     | 5     | 1998 | 12  | 65.68 | 104.38 | 133.81   |
| 84  | 0     | 5     | 1998 | 16  | 66.81 | 103.35 | 38.15    |
| 84  | 1     | 5     | 1998 | 21  | 67.06 | 103.95 | 21.76    |
| 84  | 1     | 5     | 1998 | 26  | 67.23 | 104.20 | 13.39    |
| 84  | 1     | 5     | 1998 | 31  | 67.22 | 103.89 | 118.52   |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 85  | 1     | 4     | 1996 | 21  | 67.69 | 107.98 | -        |
| 85  | 1     | 4     | 1996 | 26  | 66.47 | 103.96 | 220.57   |
| 85  | 2     | 5     | 1996 | 1   | 66.68 | 104.08 | 23.94    |
| 85  | 1     | 5     | 1996 | 6   | 66.70 | 104.29 | 9.50     |
| 85  | 1     | 5     | 1996 | 11  | 66.79 | 104.51 | 13.90    |
| 85  | 2     | 5     | 1996 | 16  | 67.09 | 104.96 | 38.68    |
| 85  | 1     | 5     | 1996 | 21  | 67.26 | 105.04 | 19.21    |
| 85  | 3     | 5     | 1996 | 26  | 67.77 | 104.01 | 71.63    |
| 85  | A     | 5     | 1996 | 31  | 67.74 | 103.33 | 28.81    |
| 85  | 3     | 6     | 1996 | 5   | 67.70 | 103.25 | 5.58     |
| 85  | 3     | 6     | 1996 | 10  | 67.72 | 103.32 | 3.70     |
| 85  | 2     | 6     | 1996 | 15  | 67.67 | 103.24 | 6.50     |
| 85  | 3     | 6     | 1996 | 20  | 67.79 | 103.29 | 13.51    |
| 85  | 1     | 6     | 1996 | 25  | 67.82 | 103.03 | 11.42    |
| 85  | 2     | 6     | 1996 | 30  | 66.91 | 101.46 | 121.42   |
| 85  | 1     | 7     | 1996 | 5   | 66.68 | 101.19 | 28.17    |
| 85  | 2     | 7     | 1996 | 10  | 67.36 | 103.80 | 136.16   |
| 85  | 1     | 7     | 1996 | 15  | 67.61 | 105.85 | 91.58    |
| 85  | 3     | 7     | 1996 | 20  | 66.52 | 106.07 | 121.54   |
| 85  | 2     | 7     | 1996 | 25  | 65.63 | 105.20 | 106.43   |
| 85  | 3     | 7     | 1996 | 30  | 65.67 | 104.99 | 10.60    |
| 85  | 1     | 8     | 1996 | 4   | 66.15 | 104.43 | 59.10    |
| 85  | 2     | 8     | 1996 | 9   | 66.32 | 104.42 | 18.90    |
| 85  | 2     | 8     | 1996 | 14  | 66.14 | 104.41 | 20.01    |
| 85  | 1     | 8     | 1996 | 19  | 66.08 | 104.59 | 10.50    |
| 85  | 1     | 8     | 1996 | 24  | 66.01 | 104.37 | 12.62    |
| 85  | 1     | 8     | 1996 | 29  | 66.08 | 104.62 | 13.71    |
| 85  | 2     | 9     | 1996 | 3   | 66.84 | 103.36 | 101.32   |
| 85  | 1     | 9     | 1996 | 8   | 67.00 | 102.78 | 30.91    |
| 85  | 1     | 9     | 1996 | 18  | 67.26 | 102.19 | 38.54    |
| 85  | 2     | 9     | 1996 | 23  | 67.37 | 102.14 | 12.41    |
| 85  | 1     | 9     | 1996 | 28  | 67.27 | 101.93 | 14.30    |
| 85  | 3     | 10    | 1996 | 3   | 66.71 | 102.40 | 65.52    |
| 85  | 2     | 10    | 1996 | 8   | 65.29 | 103.95 | 172.70   |
| 85  | 2     | 10    | 1996 | 13  | 64.33 | 102.91 | 117.51   |
| 85  | 2     | 10    | 1996 | 18  | 64.53 | 102.87 | 22.32    |
| 85  | 1     | 10    | 1996 | 23  | 64.56 | 102.22 | 31.23    |
| 85  | 2     | 10    | 1996 | 28  | 65.00 | 103.44 | 75.71    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 85  | 2     | 11    | 1996 | 2   | 65.37 | 104.16 | 53.10    |
| 85  | 1     | 11    | 1996 | 7   | 65.90 | 104.03 | 59.22    |
| 85  | 1     | 11    | 1996 | 12  | 66.01 | 105.80 | 81.10    |
| 85  | 2     | 11    | 1996 | 17  | 65.95 | 106.69 | 40.82    |
| 85  | 2     | 11    | 1996 | 22  | 65.81 | 106.41 | 20.10    |
| 85  | 2     | 11    | 1996 | 27  | 65.66 | 106.26 | 18.03    |
| 85  | 2     | 12    | 1996 | 2   | 65.65 | 105.93 | 15.16    |
| 85  | 1     | 12    | 1996 | 7   | 65.58 | 105.86 | 8.42     |
| 85  | 1     | 12    | 1996 | 12  | 65.67 | 105.96 | 11.01    |
| 85  | 3     | 12    | 1996 | 17  | 65.81 | 106.37 | 24.35    |
| 85  | 3     | 12    | 1996 | 22  | 65.66 | 106.40 | 16.73    |
| 85  | 2     | 12    | 1996 | 27  | 65.66 | 106.78 | 17.41    |
| 85  | A     | 1     | 1997 | 1   | 65.50 | 106.63 | 19.08    |
| 85  | 1     | 1     | 1997 | 6   | 65.56 | 106.25 | 18.73    |
| 85  | 2     | 1     | 1997 | 11  | 65.49 | 106.38 | 9.82     |
| 85  | 1     | 1     | 1997 | 16  | 65.62 | 106.61 | 17.91    |
| 85  | 1     | 1     | 1997 | 21  | 65.66 | 106.76 | 8.19     |
| 85  | 0     | 1     | 1997 | 26  | 65.66 | 106.77 | 0.46     |
| 85  | 2     | 1     | 1997 | 31  | 65.56 | 106.36 | 21.86    |
| 85  | 0     | 2     | 1997 | 5   | 65.53 | 106.81 | 20.98    |
| 85  | 1     | 2     | 1997 | 10  | 65.69 | 106.61 | 20.02    |
| 85  | 0     | 2     | 1997 | 15  | 65.73 | 106.44 | 8.96     |
| 85  | 0     | 2     | 1997 | 20  | 65.83 | 106.35 | 11.85    |
| 85  | 2     | 2     | 1997 | 25  | 65.76 | 106.51 | 10.66    |
| 85  | 1     | 3     | 1997 | 2   | 65.70 | 106.70 | 10.95    |
| 85  | B     | 3     | 1997 | 7   | 65.70 | 106.60 | 4.57     |
| 85  | 1     | 3     | 1997 | 12  | 65.60 | 106.40 | 14.41    |
| 85  | 1     | 3     | 1997 | 17  | 65.60 | 106.40 | 0.00     |
| 85  | 1     | 3     | 1997 | 22  | 65.70 | 105.60 | 38.32    |
| 85  | 1     | 3     | 1997 | 27  | 65.80 | 105.20 | 21.38    |
| 85  | 1     | 4     | 1997 | 1   | 65.90 | 104.90 | 17.60    |
| 85  | 1     | 4     | 1997 | 6   | 66.00 | 104.60 | 17.56    |
| 85  | 1     | 4     | 1997 | 11  | 66.20 | 105.00 | 28.62    |
| 85  | 3     | 4     | 1997 | 16  | 66.30 | 104.90 | 11.98    |
| 85  | 2     | 4     | 1997 | 21  | 66.40 | 104.00 | 41.65    |
| 85  | 3     | 4     | 1997 | 26  | 66.60 | 103.60 | 28.44    |
| 85  | 1     | 5     | 1997 | 1   | 66.60 | 103.20 | 17.66    |
| 85  | 1     | 5     | 1997 | 6   | 66.90 | 102.40 | 48.42    |
| 85  | 2     | 5     | 1997 | 11  | 67.00 | 102.70 | 17.15    |
| 85  | 1     | 5     | 1997 | 16  | 66.90 | 102.50 | 14.12    |
| 85  | 1     | 5     | 1997 | 21  | 66.90 | 102.50 | 0.00     |
| 85  | 2     | 5     | 1997 | 26  | 67.20 | 102.90 | 37.59    |
| 85  | 3     | 5     | 1997 | 31  | 67.30 | 103.00 | 11.92    |
| 85  | 2     | 6     | 1997 | 5   | 67.60 | 102.60 | 37.46    |
| 85  | 2     | 6     | 1997 | 10  | 67.60 | 102.40 | 8.47     |
| 85  | 2     | 6     | 1997 | 15  | 67.50 | 102.50 | 11.90    |
| 85  | 1     | 6     | 1997 | 20  | 67.50 | 102.40 | 4.25     |
| 85  | A     | 6     | 1997 | 25  | 67.30 | 102.00 | 28.04    |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 85  | 0     | 6     | 1997 | 30  | 67.10 | 102.20 | 23.84    |
| 85  | 3     | 7     | 1997 | 5   | 67.10 | 100.50 | 73.54    |
| 85  | 1     | 7     | 1997 | 10  | 67.30 | 98.90  | 72.42    |
| 85  | 1     | 7     | 1997 | 15  | 67.00 | 98.80  | 33.63    |
| 85  | 3     | 7     | 1997 | 20  | 66.50 | 100.20 | 82.84    |
| 85  | 1     | 7     | 1997 | 25  | 66.50 | 101.90 | 75.35    |
| 85  | 2     | 7     | 1997 | 30  | 66.90 | 103.80 | 94.64    |
| 85  | 2     | 8     | 1997 | 4   | 66.70 | 105.30 | 69.35    |
| 85  | A     | 8     | 1997 | 9   | 67.00 | 105.50 | 34.48    |
| 85  | 1     | 8     | 1997 | 14  | 67.30 | 105.80 | 35.78    |
| 85  | 2     | 8     | 1997 | 19  | 67.50 | 105.60 | 23.82    |
| 85  | 1     | 8     | 1997 | 24  | 67.70 | 105.10 | 30.71    |
| 85  | 1     | 8     | 1997 | 29  | 67.70 | 104.40 | 29.53    |
| 85  | 3     | 9     | 1997 | 3   | 67.76 | 104.27 | 8.63     |
| 85  | 1     | 9     | 1997 | 8   | 67.65 | 103.60 | 30.79    |
| 85  | A     | 9     | 1997 | 13  | 67.61 | 103.39 | 9.94     |
| 85  | 1     | 9     | 1997 | 18  | 67.78 | 104.72 | 59.21    |
| 85  | 1     | 9     | 1997 | 23  | 67.47 | 104.70 | 34.47    |
| 85  | 0     | 9     | 1997 | 28  | 67.25 | 104.56 | 25.18    |
| 85  | 1     | 10    | 1997 | 8   | 65.65 | 102.71 | 195.91   |
| 85  | 0     | 10    | 1997 | 13  | 64.59 | 101.16 | 138.34   |
| 85  | 2     | 10    | 1997 | 18  | 64.10 | 100.41 | 65.35    |
| 85  | 0     | 10    | 1997 | 28  | 63.45 | 99.55  | 83.70    |
| 85  | B     | 10    | 1997 | 28  | 63.34 | 98.99  | 30.44    |
| 85  | 1     | 11    | 1997 | 7   | 63.17 | 101.15 | 109.69   |
| 85  | 2     | 11    | 1997 | 17  | 63.23 | 102.73 | 79.47    |
| 85  | 0     | 11    | 1997 | 22  | 63.60 | 103.84 | 68.86    |
| 85  | 2     | 11    | 1997 | 27  | 63.73 | 104.14 | 20.68    |
| 85  | 2     | 12    | 1997 | 2   | 63.74 | 104.24 | 5.04     |
| 85  | 1     | 12    | 1997 | 7   | 63.40 | 104.40 | 38.62    |
| 85  | 1     | 12    | 1997 | 12  | 63.55 | 104.07 | 23.38    |
| 85  | 0     | 12    | 1997 | 17  | 63.57 | 104.13 | 3.71     |
| 85  | 2     | 12    | 1997 | 22  | 63.52 | 103.76 | 19.15    |
| 85  | B     | 12    | 1997 | 27  | 63.79 | 103.65 | 30.50    |
| 85  | 1     | 1     | 1998 | 6   | 63.72 | 103.32 | 17.99    |
| 85  | 2     | 1     | 1998 | 16  | 63.45 | 103.63 | 33.70    |
| 85  | 1     | 1     | 1998 | 21  | 63.41 | 103.45 | 9.99     |
| 85  | 1     | 1     | 1998 | 26  | 63.36 | 103.51 | 6.31     |
| 85  | 1     | 1     | 1998 | 31  | 63.32 | 103.56 | 5.10     |
| 85  | 1     | 2     | 1998 | 10  | 63.33 | 103.23 | 16.51    |
| 85  | 1     | 2     | 1998 | 15  | 63.34 | 103.27 | 2.28     |
| 85  | 1     | 2     | 1998 | 25  | 63.38 | 102.64 | 31.72    |
| 85  | 1     | 3     | 1998 | 2   | 63.46 | 102.52 | 10.71    |
| 85  | 2     | 3     | 1998 | 12  | 63.48 | 103.24 | 35.82    |
| 85  | 1     | 3     | 1998 | 17  | 63.61 | 103.77 | 29.96    |
| 85  | 1     | 3     | 1998 | 22  | 63.56 | 103.74 | 5.75     |
| 85  | 0     | 3     | 1998 | 28  | 64.01 | 103.12 | 58.56    |
| 85  | 0     | 4     | 1998 | 1   | 65.29 | 102.19 | 149.01   |

| PTT | CLASS | MONTH | YEAR | DAY | LAT   | LONG   | DISTANCE |
|-----|-------|-------|------|-----|-------|--------|----------|
| 85  | 0     | 4     | 1998 | 6   | 65.49 | 102.17 | 22.25    |
| 85  | 1     | 4     | 1998 | 11  | 65.95 | 102.66 | 55.83    |
| 85  | 1     | 4     | 1998 | 21  | 66.70 | 103.22 | 87.04    |
| 85  | 1     | 4     | 1998 | 26  | 66.78 | 103.80 | 26.97    |
| 85  | 3     | 5     | 1998 | 6   | 66.56 | 104.23 | 30.93    |
| 85  | 1     | 5     | 1998 | 11  | 67.02 | 104.82 | 57.30    |
| 85  | 0     | 5     | 1998 | 12  | 67.02 | 104.89 | 3.04     |
| 85  | 0     | 5     | 1998 | 21  | 67.71 | 103.55 | 95.76    |
| 85  | 0     | 5     | 1998 | 26  | 67.74 | 104.22 | 28.43    |
| 85  | 3     | 5     | 1998 | 26  | 67.74 | 104.12 | 4.21     |
| 85  | 3     | 5     | 1998 | 31  | 67.75 | 103.96 | 6.83     |

## APPENDIX G. Compilation of historical information on caribou, Adelaide Peninsula and Queen Maud Gulf area.

The fragmentary historical accounts describes the existence, then the disappearance by the 1930s of a migratory caribou population that summered on King William Island and wintered on the mainland (Macpherson and Manning 1959, Freeman 1976, Klutschak 1987).

Macpherson and Manning (1959) compiled the historical references to caribou in the area. The most detailed account of the caribou is from Klutschak (1987).

Klutschak (1987) traveled with the Inuit across from Repulse Bay in 1878 and spent the summer on King William Island and Adelaide Peninsula. Klutschak's (1987) observations in 1879 were in the pre-trading era although not pre-contact as the patterns of movements of the people had already been influenced by the explorational activities of the Europeans. Those changes in the distribution and movements of the people probably scarcely modified hunting patterns as the introduction of firearms and trapping had not yet occurred.

Klutschak (1987) from his travels to Cape Felix and along the west coast describes the migration of the caribou to King William Island in May. He mentions that caribou calved on in the interior of the island and moved to the coast in July and August. The numbers of caribou gathered on the south coast in late September led Klutschak (1987) to call southeastern King William Island "...A caribou hunter's Eldorado". The Netsilingmiut hunted caribou in August in the interior of Adelaide Peninsula using inukshuks to guide the caribou so they could be chased into large lakes and hunted from kayaks. In September the caribou that had gathered near the coast of Adelaide Peninsula in large numbers moved away. The Netsilingmiut moved across to southern King William Island to hunt the caribou as the caribou there waited for the straits to freeze over. Rasmussen (1927) also observes the fall hunt of caribou crossing from King William Island but he also commented on hunters leaving King William Island to hunt for calves further south (possibly Adelaide Peninsula in spring).

Klutschak's (1987) description of the caribou movements and the hunting of them in 1879 is similar to the descriptions compiled by Freeman (1976) for the area. When the use of firearms became widespread after the establishment of trading post near Peabody Point in 1923, hunting patterns changed. Hunters with firearms could hunt caribou year round instead of painstakingly stalking with bow and arrow in summer or ambushing caribou during river crossings.

By the 1920s and 1930s, the migration of caribou to King William Island dwindled, then stopped and a more widespread decrease in caribou numbers was apparent (Freeman 1976). A clue to a possible cause of the decline can be found in Klutschak's (1987:117-119) description of the effect of using rifles during the fall crossing of the caribou to the mainland and his comment that, "... Never had the hunting efforts of the indigenous residents been so productive as this fall."

Weather may have compounded the effect of firearms in triggering of the decline of the caribou. Amundsen (in Macpherson and Manning 1959) noted that caribou were numerous and fat in the fall of 1903 but scarce and thin in the fall of 1904 in the vicinity of Gjoa Haven. The failure of the caribou to cross caused destitution of the Inuit on the island in the winter of 1924-25 (Hoare in Macpherson and Manning 1959). Rasmussen (1927) referred to a severe winter causing starvation of the Inuit in the early 1920s.

If the failure of the caribou to cross in 1924 was only the result of the introduction of firearms, it happened quickly, as Rasmussen (1927) does not remark that firearms were in common use. Alternatively, the stopping of the migration was not as abrupt as Hoare and Burwash (in Macpherson and Manning 1959) were led to believe. Gilder (in Macpherson and Manning 1959) notes that by 1932, caribou were scarce on King William Island and the seasonal migrations to and from the island had almost stopped. Caribou hunting became combined with winter trapping or summer fishing after the 1920s. The caribou were hunted over an extensive area along the mainland coast and inland west to the Ellice River; south to the Back River or even the Garry Lake area; east to Pelly and Committee Bays and northeast on the Boothia Peninsula (Freeman 1976).

By the 1960s, people had concentrated in the settlement of Gjoa Haven and a less extensive area was hunted. Caribou were hunted mostly on Adelaide Peninsula, south to Franklin Lake and from around the Back River to Hayes River area (Freeman 1976).

Ken Lambert, Wildlife Office in Gjoa Haven interviewed an elder, Sebastian Aaluk Born in 1920, who provided these comments summarised below in 1985. "When five or six years old – people already hunting with rifles. He also feels that because of rifles (and the island was small) the caribou became less in number. During that time, the animals stayed all year round on the island. After the rifles came, there were lots caribou and musk-ox shot. Only the Inuit were doing the shooting. By using rifles, people had more meat than before".

## REFERENCES

Freeman, M.M.R. 1976. Inuit Land Use and Occupancy Project. Indian and Northern Affairs, Canada. Ottawa, Ontario. Vol 1, 262 p.

Klutschak, H. 1987. Overland to Starvation Cove. W. Barr, trans. and ed., Univ. Toronto Press, Toronto, Ontario. 261 pp.

Macpherson, A.H. and T.H. Manning. 1959. The birds and mammals of Adelaide Peninsula, N.W.T. Nat. Mus. Can. Bull. 161, 63pp.

Rasmussen, K. 1927. Across arctic America – narrative the Fifth Thule Expedition. Originally published by G. Putnam's Sons, reprinted Greenwood Press, New York, 1969, 388pp.

