

REPRODUCTIVE SUCCESS OF PEREGRINE FALCONS AND OTHER RAPTORS
AT WAGER BAY AND MELVILLE PENINSULA
NORTHWEST TERRITORIES

GEORGE W. CALEF

DOUGLAS C. HEARD

File Report No. 4

N.W.T. WILDLIFE SERVICE
1980

Contents of this paper may be used only with permission
of the N.W.T. Wildlife Service. An excerpt from this paper
appears in "Auk" 96:662-674.

PROPERTY OF
G.N.W.T. DEPARTMENT OF
RENEWABLE RESOURCES LIBRARY

Copy 1

ABSTRACT

The Wager Bay area in northeastern Keewatin was surveyed for nests of raptorial birds during late July and August in 1976 and 1977. In 1976 we located 14 nest sites occupied by peregrine falcons (Falco peregrinus tundrius), five sites occupied by gyrfalcons (Falco rusticolus), 11 sites occupied by rough-legged hawks (Buteo lagopus), and one nest site of a golden eagle (Aquila chrysaetos). In 1977, 27 peregrine falcon sites, five gyrfalcon sites, two rough-legged hawk sites, and one eagle site were located. In 1977, peregrine falcons reoccupied at least 54%, and possibly as many as 91% of the nesting territories occupied in 1976. Of the 13 peregrine sites visited in 1976, 85% produced young; young/occupied site averaged 2.08, and young/successful nest averaged 2.45. In 1977, 75% of the 24 visited sites produced young; young/occupied site averaged 2.21, and young/successful nest averaged 2.95. The peregrine falcon sites did not differ significantly between years in percent successful sites, young/occupied site, or young/successful nest. There was no correlation between the number of young peregrine falcons produced at nest sites in 1976, and the number produced at the same sites in 1977. The nests which had been visited in 1976 produced 2.16 young/successful nest in 1977, as compared with 3.3 young/successful nest among the nests not previously visited. This difference was significant. More producing peregrine falcon sites were located at Wager Bay than are known to exist in any other area of the North American Arctic. The production of young peregrine falcons at Wager Bay in 1976 and 1977 exceeded that of any area surveyed during the 1975 North American Peregrine Falcon Survey.

The southwestern part of Melville Peninsula was also surveyed in August 1977. Of the 15 occupied peregrine falcon sites located, at least 10 produced young. The average number of young/successful nest was 2.6. The peregrine falcon populations at Wager Bay and Melville Peninsula did not differ significantly in either number of young/successful nest, or in mean distance between occupied sites. Both the Wager Bay and the Melville Peninsula peregrine falcon populations are considered to be undepleted populations. A total of 30 peregrine falcon chicks from 11 nests were banded at Wager Bay, and six chicks from three nests on Melville Peninsula. One of the banded birds was recaptured on North Padre Island, Texas.

TABLE OF CONTENTS

ABSTRACT.....	i
LIST OF FIGURES.....	v
LIST OF TABLES.....	v
INTRODUCTION.....	1
METHODS AND MATERIALS.....	3
The Study Area.....	3
Survey Techniques.....	3
Banding.....	6
RESULTS.....	6
Number, Location and Site Characteristics of Peregrine Falcon Eyries.....	6
Nesting Success and Productivity of Peregrine Falcons at Wager Bay.....	7
Reoccupancy and Productivity of Previously Occupied Sites.....	13
Nesting Success and Productivity of Peregrine Falcons on Melville Peninsula.....	17
Observations of Nest Sites of Other Raptor Species.....	17
Banding and Band Recoveries.....	19
DISCUSSION.....	22
Productivity of Peregrine Falcons in Northeastern Keewatin.....	22
Occupancy Rates of Peregrine Falcons.....	24
Changes in Productivity in Peregrine Falcon Populations.....	27
Productivity of Other Raptors.....	29
RECOMMENDED FUTURE STUDIES.....	30

At the beginning of this study, little was known about the peregrine falcon populations of the District of Keewatin in the Northwest Territories, especially in the northeastern areas. During July and August of 1976, we conducted a survey of nesting raptors at Wager Bay. This survey revealed a highly productive population of peregrine falcons. In 1977 the surveys were intensified at Wager Bay and expanded to include Melville Peninsula.

The objectives of these surveys were:

1. To locate nest sites of peregrine falcons and other raptors which must be considered in routing a pipeline.
2. To determine raptor density and productivity to use in evaluating the regional importance of any individual nest which might be affected by pipeline construction.
3. To provide background information on raptor density and productivity against which post-construction changes can be evaluated.

INTRODUCTION

Recent surveys of known nesting areas of the peregrine falcon (Falco peregrinus) in northern Canada and Alaska have shown that both occupancy of nest sites and productivity have declined in many areas (Fyfe et al. 1976). Several populations of the arctic peregrine had declined to such an extent that Newton (1976a) commented, "the entire F. p. tundrius population is now well into decline."

The peregrine falcon is considered an endangered species (Godfrey 1970). Since raptorial birds are susceptible to disturbance by the construction and operation of a petroleum pipeline (Gunn 1975), peregrine falcons and other raptors deserve special attention with respect to the routing and construction of the proposed Polar Gas pipeline.

Raptor populations are often limited by the availability of suitable nest sites (Newton 1976b). If these nest sites were to be destroyed by quarrying or construction, the population would decline. Construction activities or operation of aircraft and other vehicles may inadvertently disturb birds during courtship or nesting. The highly visible birds themselves will attract pipeline personnel who may intentionally or unintentionally disturb them. Such disturbances could cause birds to fail to nest, or to abandon eggs or young.

At the beginning of this study, little was known about the peregrine falcon populations of the District of Keewatin in the Northwest Territories, especially in the northeastern areas. During July and August of 1976, we conducted a survey of nesting raptors at Wager Bay. This survey revealed a highly productive population of peregrine falcons. In 1977 the surveys were intensified at Wager Bay and expanded to include Melville Peninsula.

The objectives of these surveys were:

1. To locate nest sites of peregrine falcons and other raptors which must be considered in routing a pipeline.
2. To determine raptor density and productivity to use in evaluating the regional importance of any individual nest which might be affected by pipeline construction.
3. To provide background information on raptor density and productivity against which post-construction changes can be evaluated.

METHODS AND MATERIALS

The Study Area

The area searched for raptor nests around Wager Bay included the shorelines of Wager Bay, Brown Lake, Ford Lake, and the shores of adjacent rivers and lakes within 15 to 30 km of these water bodies (Fig. 1). On Melville Peninsula, we searched the southwestern section, concentrating mostly on river valleys and cliffs overlooking large lakes (Fig. 1). The coastal cliffs were not searched. Some areas of Melville Peninsula featured miles of almost continuous deep river gorges. Rocky hills and sea cliffs (elevations up to 580 m), rock outcrops, and cliffs along the rivers that occur throughout both study areas provide innumerable ledges potentially suitable for nesting by raptors.

The tundra habitats in both areas range from wet lowland areas dotted with lakes, ponds and standing water to well drained upland sites. Potential prey species include small mammals, passerine birds and larger birds.

Survey Techniques

Since the Wager Bay area had not previously been searched for raptors, we had no prior knowledge of nest sites, or of suitable nesting habitat. Therefore, during the initial survey in 1976, we concentrated our searches along the shores of Wager Bay, Brown Lake, Ford Lake, and along lakes and

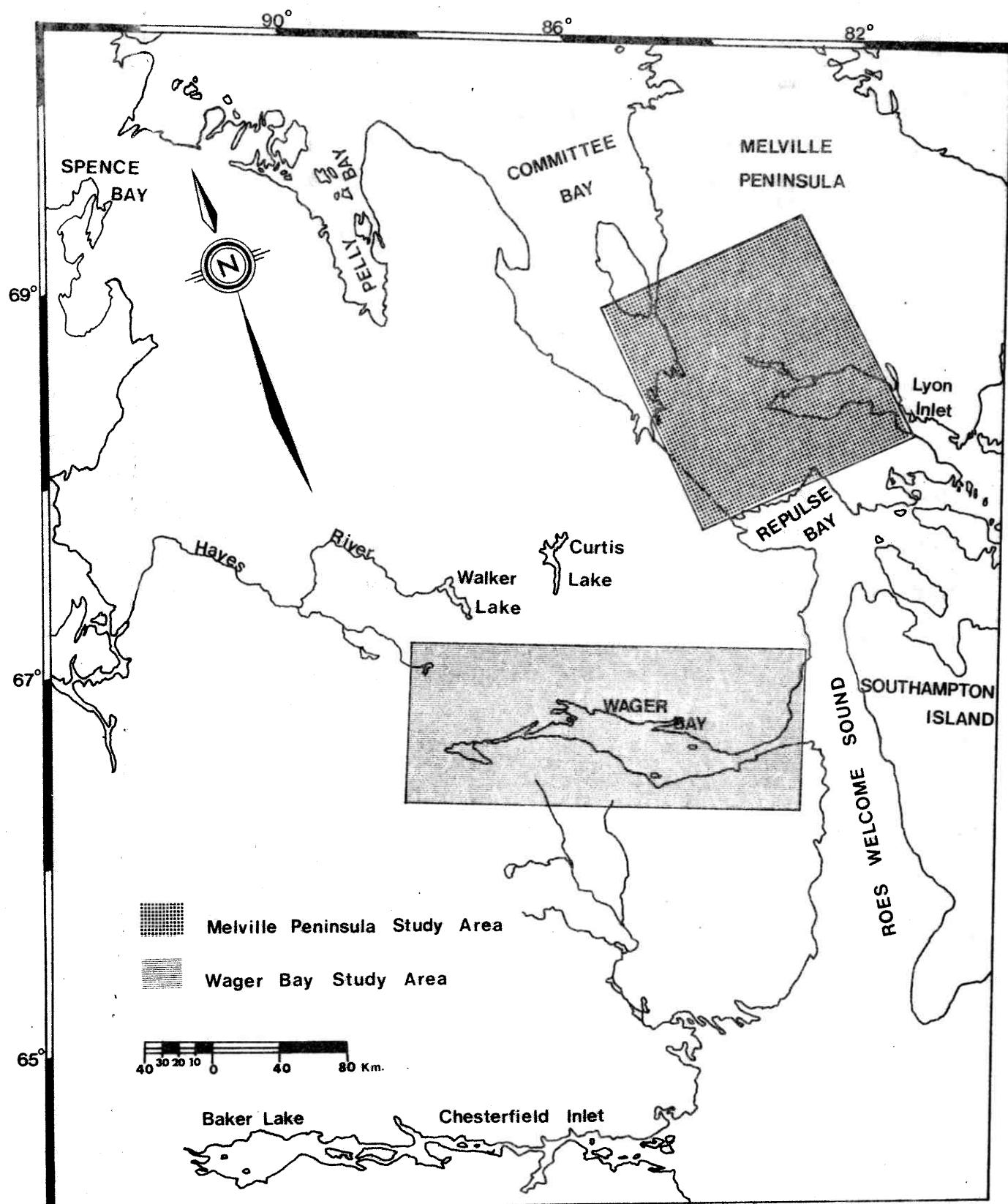


Figure 1. Map of northeastern Keewatin showing the areas searched for raptor nests at Wager Bay and on Melville Peninsula.

rivers where 1:250,000 topographic maps showed cliffs or broken relief. We searched by flying close to cliffs and outcrops, looking for nests, flushed birds, or excrement stains on the rock. When stains were observed on a cliff, we flew past the cliff several times to locate any nests. When a nest was observed, we attempted to count eggs or young. We also attempted to identify the species of all raptors observed. All sightings of possible nest sites and confirmed occupied nests were mapped.

In 1977 we concentrated first on revisiting all occupied and potential nest sites located in 1976. When a site occupied by peregrine falcons in 1976 was found unoccupied in 1977, we searched the surrounding area looking for alternate sites. Thereafter, we expanded our searches to areas unsurveyed during 1976. The procedure used on Melville Peninsula was the same as that used at Wager Bay in 1976 because we had no prior knowledge of nest sites on Melville Peninsula.

Surveys at Wager Bay were conducted from 23 July to 30 August in 1976, and 18 July to 28 August in 1977. Our survey of Melville Peninsula was conducted from 15 to 17 August 1977.

Most of the searching at Wager Bay was done from a Cessna 185, but from 8 to 10 August 1977, we searched with a Bell 206 helicopter, and on Melville Peninsula, a Hughes 500 helicopter was used.

Wherever possible, we later visited suspected nest sites on foot to confirm occupancy, to locate the nest and describe the site, to count numbers of eggs and young, to determine the developmental stage of the young, and to collect any addled eggs for analysis of egg shell thickness and pesticide residue. Eggs were sent to Richard Fyfe of the Canadian Wildlife Service for analysis.

Banding

Whenever possible, peregrine falcon nestlings were banded with a U.S. Fish and Wildlife Service numbered metal band (size 7A) on one leg, and a black plastic band with white numbering (using a code of two numbers and one letter) on the other leg. The young falcons were banded after they had reached the large downy stage, and were most were partially feathered.

RESULTS

Number, Location and Site Characteristics of Peregrine Falcon

Eyries

In 1976 we located 14 eyries occupied by peregrine falcons at Wager Bay, and 27 occupied eyries in 1977. Ten of the occupied eyries in 1977 were at

sites averaged 8.09 km apart (range 3.22 - 19.31 km). Twenty-four of the cliffs with nests were above or near lakes, streams, or the sea (Table 1). Nests averaged a distance of 5.85 km from the major water bodies of Wager Bay, Ford Lake and Brown Lake. Eighteen nests were less than 4 km from these water bodies, and only four were located more than 15 km away from them.

We located 15 occupied peregrine falcon nests on southern Melville Peninsula (Table 2). Twelve of these nests were on cliffs above lakes. The occupied sites averaged 9.16 km apart (range 4.83 - 12.87 km) if nests MP₁, and MP₅ on the periphery of the study area are excluded.

Seventy percent of the peregrine nests observed on Melville Peninsula were on ledges without apparent nest material. The other 30% were in the abandoned stick nests of other species. At Wager Bay, 32% of the peregrine nests observed were in stick nests, and the remainder were on ledges without apparent nest material. Thus, the Wager Bay and Melville Peninsula populations are virtually identical in their use of nest types.

Nesting Success and Productivity of Peregrine Falcons at Wager Bay

The percentage of successful nests (defined as those occupied eyries having living young at the time of our visit), number of young/occupied site, and the number of young/successful nest did not differ significantly between the years 1976 and 1977 in the Wager Bay peregrine falcon population (Table 3). The percentage of successful nests was slightly higher in 1976 (85% vs. 75%), but the number of young/occupied site and the number of

Table 1. Site characteristics and productivity of peregrine falcon eyries at Wager Bay, Northwest Territories.

Site ^a	Description	Nest type	Number Young			Number eggs	Nearest site occupied in 1976	Distance to nearest site (km) in 1977
			1976	1977	1977			
P ₁	sea-cliff	rock ledge	0	3	1	0	P _{5A}	6.4
P ₂	cliff on river	rock ledge	4	1	0	1	P ₁₂	5.6
P ₃	cliff above lake	grassy ledge	4	*	0	*	P ₈	—
P _{3A}	outcrop near stream	large stick nest	—	3	—	0	P _{11A}	8.5
P ₄	cliff above lake	rock ledge	3-4	*	—	*	P ₁₀	—
P ₅	sea-cliff	rock ledge	2	*	1	*	P ₁	—
P _{5A}	cliff near sea	stick nest	—	0 ^b	—	3	P ₂₃	3.2
P ₆	cliff near sea	stick nest	1	*	1	*	P ₇	14.5
P ₇	cliff near sea	grassy ledge	2	0 ^c	0	0	P ₉	—
P ₈	outcrop near sea	stick nest	3	*	0	*	P ₁₁	—
P ₉	sea-cliff	0	2+d	0	—	—	P ₁₀	3.6
P ₁₀	sea-cliff	1 ^d	2 ^d	0	—	—	P ₉	3.6
P ₁₁	cliff near pond	2-3 ^d	*e	—	0	—	P ₁₁	—
P _{11A}	cirque-like cliff	grassy ledge	3	1	0	0	P ₂	5.6
P ₁₂	outcrop near pond	rock ledge	3	1	0	0	P ₂	5.6

Table 1 (continued)

Site	Description	Nest type	Number			Nearest site occupied in 1976	Nearest site occupied in 1977	Distance to nearest site (km) in 1977
			Young 1976	Young 1977	eggs 1976			
P ₁₃	outcrop near lake	stick nest	2 ^d	4	0	0	P ₃₁	14.5
P ₁₄	cliff above lake	grassy ledge	?	* ^e	?	*	—	—
P ₁₅	cliff on river	rock ledge	4	0	0	P ₁₆	7.2	
P ₁₆	cliff on pond	grassy ledge	3	0	0	P ₁₇	3.22	
P ₁₇	cliff near pond	stick nest	2	0	0	P ₁₆	3.22	9
P ₁₈	cliff on small stream	undetermined	—	—	—	P ₁₇	10.46	
P ₁₉	cliff near large lake	undetermined	—	—	—	P ₂₀	9.25	
P ₂₀	cliff on stream	stick nest	3	0	0	P ₂₁	4.83	
P ₂₁	cliff above river	grassy ledge	4	0	0	P ₂₀	4.83	
P ₂₂	cliff on stream	stick nest	4	0	0	P ₂₁	4.83	
P ₂₃	in deep canyon	grassy ledge	4	0	0	P _{5A}	3.22	
P ₂₄	in deep canyon	undetermined	—	—	—	P ₂₇	8.05	
P ₂₅	cliff near sea	stick nest	2	0	0	P ₂₅	4.02	
P ₂₆	cliff near river	undetermined	—	—	—	P ₃₀	12.47	
P ₂₇	cliff near sea	grassy ledge	2	0	0	P ₂₅	4.02	

Table 1 (continued)

Site	Description	Nest type	Number			Nearest site occupied in 1977	Distance to nearest site (km) in 1977
			1976	1977	1976		
P ₂₈	outcrop near sea	undetermined		4 ^d		-	P ₂₉ 19.31
P ₂₉	outcrop near lake	grassy ledge	0		0	P ₂₈	19.31
P ₃₀	outcrop near lake	grassy ledge	3 ^d		-	P ₂₆	12.47
P ₃₁	outcrop near stream	undetermined		-	-	P ₁₃	14.48

a Sites P₁ - P₁₄ were first located in 1976; sites P₁₅ - P₃₁ were located in 1977.

b One large downy chick found dead below the nest.

c White down feathers observed in nest - parents vociferous.

d Young had already left the nest.

e Nest occupied by gyrfalcon in 1977.

* Nest not occupied by peregrine falcons in 1977.

** Location of sites available with permission of superintendent of N.W.T. Wildlife Service.

Table 2. Site characteristics and productivity of peregrine falcon eyries on southern Melville Peninsula, 1977.

Site	Site description	Nest type	Number young	Number eggs	Nearest site	Distance to nearest site (km)
MP ₁	cliff above small pond	grassy ledge	3	-	MP ₅	30.2
MP ₂	cliff above lake	grassy ledge	3	-	MP ₄	12.9
MP ₃	cliff on river	ledge	3 ^a	-	MP ₄	11.3
MP ₄	cliff on lake	grassy ledge	1 ^a	2	MP ₃	11.3
MP ₅	cliff on lake	grassy ledge	2	-	MP ₁	30.2
MP ₆	low cliff above small stream	undetermined	?	?	MP ₇	8.8
MP ₇	cliff on lake	undetermined	?	?	MP ₆	8.8
MP ₈	cliff on lake	undetermined	?	?	MP ₉	12.1
MP ₉	cliff on lake	on rock ledge	2 ^a	-	MP ₈	12.1
MP ₁₀	cliff on lake	stick nest	3 ^a	-	MP ₉	5.6
MP ₁₁	cliff on lake	stick nest	2 ^a	-	MP ₁₀	4.8
MP ₁₂	cliff on lake	undetermined	?	?	MP ₁₁	6.4
MP ₁₃	cliff on lake	grassy ledge	3 ^a	-	MP ₁₀	5.6
MP ₁₄	cliff near lake and river	stick nest	4 ^a	-	MP ₁₅	9.6
MP ₁₅					MP ₁₄	9.6

^a Nest checked from helicopter only.

Table 3. Comparison of reproductive success of peregrine falcons at Wager Bay, Northwest Territories in 1976 and 1977.

Year	Occupied nests	Percent successful ^a	Young/occupied site	Young + eggs/occupied site	Young/successful nest
1976	14	85%	2.08 (11/13)	2.31 (27/13)	2.45 (27/11)
1977	27	84%	2.21 (18/22)	2.42 (53/24)	2.94 (58/24)
Statistical comparison between years			$\chi^2 = .045$ d.f. = 1 p > 0.75	$t = .254$ d.f. = 35 p > 0.5	$t = .338$ d.f. = 35 p > 0.5
				$t = 1.22$ d.f. = 27 p > 0.1	

^a Reproductive success not determined for one nest in 1976 and for five nests in 1977.

young/successful site were higher in 1977. Overall, the production of peregrine falcons during these two years was remarkably similar.

However, nest sites which we had visited in 1976 produced fewer young on the average in 1977 than did those sites which we first discovered in 1977 (Table 4). If sites P_{3A} , P_{5A} , and P_{11A} are not included in the sample of nest sites visited in 1976, then there is a significantly higher number of young/successful nest at sites first discovered in 1977 than at those sites first visited in 1976. If sites P_{3A} , P_{5A} , and P_{11A} are included in the sample of sites visited in 1976, then the difference in young/successful nest is less, but still approaches significance. The difference in young/occupied site between the latter two samples was not significant, nor was the percentage of successful nests significantly different.

Reoccupancy and Productivity of Previously Occupied Sites

Of the 14 sites occupied by peregrine falcons in 1976, at least seven were reoccupied in 1977 (Table 4). One nest (P_4) was not checked, and another (P_6) was checked only from the air. Gyrfalcons occupied two of the 1976 peregrine eyries (P_{11} and P_{14}). Three nests (P_{3A} , P_{5A} and P_{11A}) at locations close to sites occupied in 1976 could be considered alternates. These three alternate sites averaged 2.4 km from the site previously occupied. The average distance between apparent alternate sites is approximately 30% of the average distance between occupied sites, and less than the minimum distance recorded between any two simultaneously occupied sites, suggesting that relocation by these three pairs did occur.

Table 4. Comparison of reproductive success in 1977 at previously visited peregrine falcon nest sites and previously unvisited sites.

Sample	Number of sites occupied	Percent of occupied sites successful		Young/successful nest		No. alternates
		Assuming alternates	No alternates ^b	Young/occupied site ^a	Assuming alternates	
Previously visited in 1976	10	80 (8/10)	85.7 (6/7)	2.0 (20/8)	2.5 (20/8)	2.16 (13/6)
Discovered in 1977	14	71.4 (10/14)	70.6 (12/17)	2.36 (33/10)	3.3 (33/10)	3.33 (40/12)
Statistical comparison of visited vs. unvisited sites	-	$\chi^2 = .229$ d.f. = 1 p>0.5	$\chi^2 = .605$ d.f. = 1 p>0.1	t = .535 d.f. = 22 p>0.5	t = 1.68 d.f. = 16 0.1>p>0.05	t = 2.54 d.f. = 16 p<0.025

a Assumes that sites 3a, 5a, and 11a are alternates to sites 3, 5 and 11.

b Assumes that sites 3a, 5a, and 11 are new sites.

From these data we calculated a minimum and maximum reoccupancy rate for the Wager Bay population. The maximum reoccupancy rate possible was 91% (10 of 11 nests). In making this calculation, we assumed that sites P_4 , P_6 and P_{14} were not adequately checked, and therefore alternates to these sites might have been occupied although we did not locate them, and we assumed that sites P_{3A} , P_{5A} and P_{11A} were alternates to sites P_3 , P_5 and P_{11} , respectively. The minimum reoccupancy rate was calculated to be 54% (7 of 13 nests). In this calculation, only P_4 (the unchecked site) was excluded from the sample, and we assumed that P_3 , P_5 , P_6 , P_8 , P_{11} and P_{14} were unoccupied (i.e. we assumed that no alternates existed).

Assuming that sites P_{3A} , P_{5A} and P_{11A} are alternative sites, we can compare productivity at sites visited in both 1976 and 1977. In 1976, 85% (11/13) of all occupied sites checked produced young; in 1977, 80% (8 of 10) were successful.

The number of young/occupied sites averaged 2.08 (27/13) in 1976, and 2.0 (20/10) in 1977. The number of young/successful nest averaged 2.45 (27/11) in 1976, and 2.5 (20/8) in 1977. None of these differences between years was significant (Table 4). No significant correlation existed ($r^2 = .032$) between the number of young peregrine falcons produced at a given site in 1976, and the number produced in 1977 at the same site (Fig. 2).

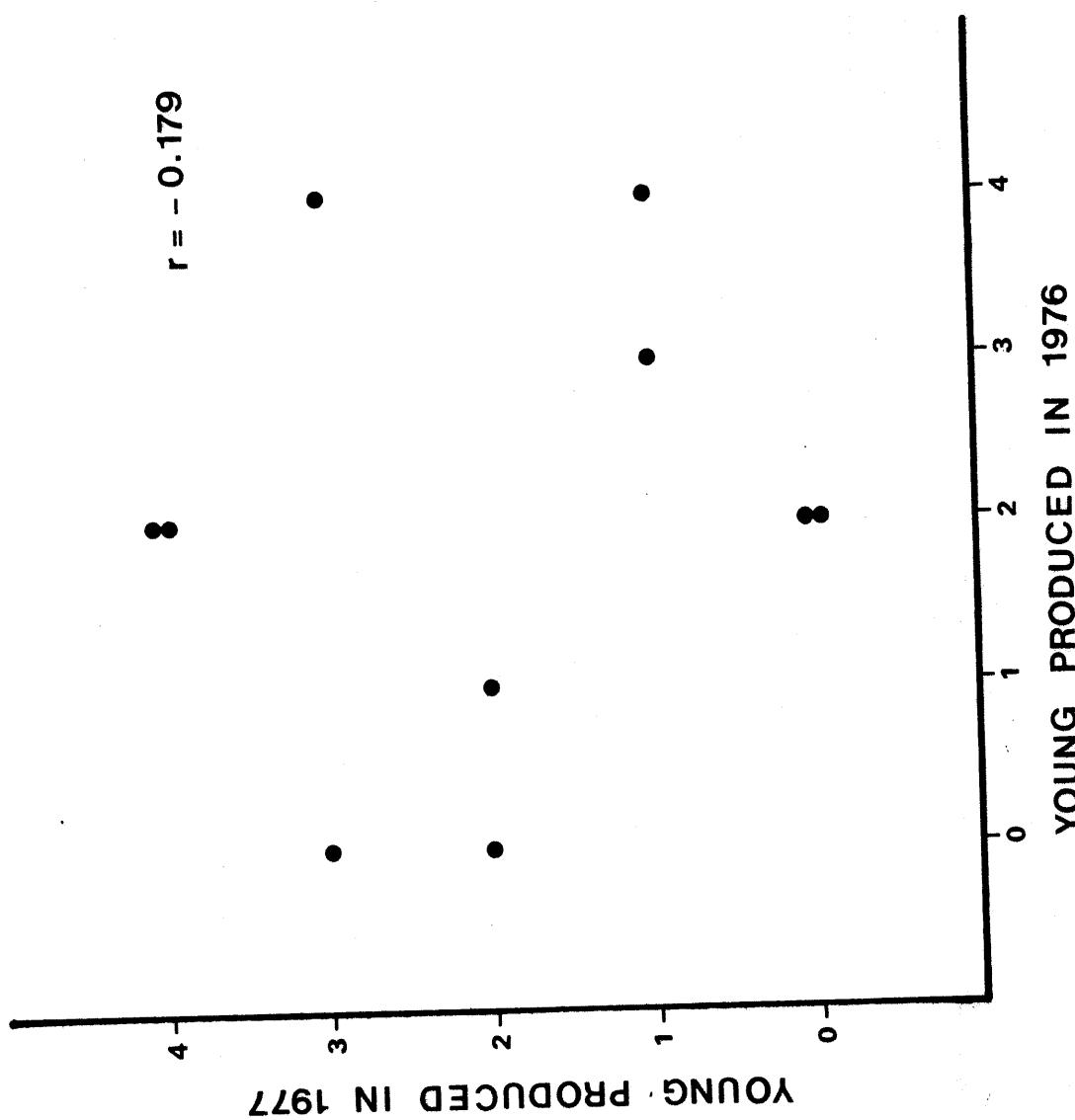


Figure 2. Correlation between number of young produced at 10 peregrine falcon sites at Wager Bay, 1976 and 1977.

Nesting Success and Productivity of Peregrine Falcons on Melville Peninsula

Of the 15 occupied sites which we located on Melville Peninsula, 10 were known to have produced young in 1977. However, since all the sites were visited in mid-August when young might have already left the nest, and since several of the sites were checked only by helicopter, it is likely that some of the remaining five nests also produced young which we did not observe. The 10 known successful sites produced 26 young; an average of 2.6/successful nest (Table 2).

The Wager Bay and Melville Peninsula peregrine falcon populations are similar in both site spacing and in productivity. The distance between nests did not differ significantly between the populations ($t = .725$, d.f. = 38, $p > 0.4$), nor did the number of young/successful nest ($t = .884$, d.f. = 26, $p > 0.2$).

The percentage of successful nests on Melville Peninsula appeared lower than at Wager Bay (66% vs. 75%). This is probably because sites on Melville Peninsula were visited later in the season, and also were not checked as intensively as the sites at Wager Bay. Overall, the population characteristics of peregrine falcons nesting on Melville Peninsula and at Wager Bay appeared similar.

Observations of Nest Sites of Other Raptor Species

In 1976 we located 11 nest sites occupied by rough-legged hawks, five sites occupied by gyrfalcons, and one site occupied by a pair of golden eagles.

In 1977, we located five occupied gyrfalcon sites at Wager Bay. At one nest site, two young were observed and banded, at another, two fully-fledged young were observed. Two of the gyrfalcon sites had been occupied by peregrine falcons in 1976. On Melville Peninsula we located one gyrfalcon site.

At Wager Bay we located only two rough-legged hawk nest sites in 1977, as compared with 11 sites in 1976. Neither of these sites successfully fledged young, although one nest initially had two eggs and the other, two young. Seven occupied rough-legged hawk nests were located on Melville Peninsula. These nests produced an average of 2.3 young/nest, as compared with 3.0 young/successful nest among six rough-legged hawk nests visited at Wager Bay in 1976.

Our surveys were conducted at the optimum time for locating peregrine falcon and rough-legged hawk sites. Young of both species were present in the nests, but had not yet fledged. The parents had been using perches for several weeks so excrement stains were highly visible. Conversely, young gyrfalcons were fledged and flying at the time of our surveys, and therefore likely to be away from the nest sites. Thus, our survey was probably less successful in locating gyrfalcon sites than it would have been if conducted a month earlier.

Nests of all raptor species at Wager Bay and Melville Peninsula were located on cliffs or rock outcrops; none were on soil cutbanks. Rough-legged hawks nested throughout the area, using rock outcrops away from bodies of water, as well as cliffs on the sea, lakes and streams. The number of

gyrfalcon nests located was too small to draw firm conclusions, but we found none on sea cliffs.

Rough-legged hawks often used lower, less protected cliffs than did peregrine falcons. However, most of the nests of all species were on or near broad ledges, and the majority were accessible without a rope.

Banding and Band Recoveries

Thirty peregrine falcon chicks from 11 nests were banded at Wager Bay (Table 5), and six were banded from three nests on Melville Peninsula (Table 6).

One of the falcons banded on Melville Peninsula was live captured and released on North Padre Island, Texas on 17 October 1977 (H. Armbruster, Canadian Wildlife Service, pers. comm.).

Table 5. Peregrine falcon nestlings banded at Wager Bay, Northwest Territories, 1977.

Site	Metal band number	Coloured band number	Age category	Date
P ₁	987-27553	-	almost fully feathered	7/8/77
	987-27554	-		
	987-27555			
P _{3A}	987-27564	7V5	partially feathered	13/8/77
	987-27937	2V8		
	987-27939	7V4		
P ₁₁	987-27565	4V0	downy	11/8/77
	987-27560			
	987-27563			
	987-27567			
P ₁₂	987-27558	-	almost fully feathered	9/8/77
P ₁₃ ^a	987-27507	5V1	fully feathered	11/8/77
	987-27508	5V3		
P ₁₆	987-27566	3V6	downy	10/8/77
	987-27562	4V5		
	987-27569	4V1		
P ₁₇	987-27570	3V4	partially feathered	10/8/77
	987-27561	4V3		
P ₂₁ ^a	987-27501	4V1	fully feathered	10/8/77
	987-27502	4V8		
P ₂₂	987-27503	4V7	partially feathered	10/8/77
	987-27505	4V9		
	987-27506	5V2		
	987-27504	5V0		
P ₂₃	987-27941	7V1	partially feathered	9/8/77
	987-27935	7V7		
	987-27943	7V6		
	987-27940	7V2		
P ₂₇	987-27599	3V3	almost feathered	17/8/77
	987-27560	3V2		
11	30			

^a Two young flew from nest and were not banded.

Table 6. Peregrine falcon nestlings banded on Melville Peninsula, Northwest Territories, 1977.

Site	Metal band number	Coloured band number	Age category	Date
MP ₁	987-27901	OP1	fully feathered	15/8/77
MP ₂	987-27902	OP0	almost fully feathered	15/8/77
	987-27903	9P9		
	987-27904	9P8		
MP ₅	987-27905	9P6	downy	16/8/77
	987-27906	1P0		
—	—	—	—	—
3	6	—	—	—
—	—	—	—	—

DISCUSSION

Productivity of Peregrine Falcons in Northeastern Keewatin

The raptor studies conducted during 1976 and 1977 established the importance of Wager Bay and Melville Peninsula as highly productive nesting areas for the tundra peregrine falcon which has been declared as "threatened" by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). More producing peregrine falcon eyries are now known at Wager Bay than in any other area in the North American Arctic (Table 7). The nests we visited at Wager Bay and Melville Peninsula produced as many young in 1977 as did all the peregrine falcon nests in the North American Arctic visited during the 1975 survey (Table 7).

Because of a combination of ideal habitats (cliffs and outcrops near many lakes, ponds and streams) and abundant passerine birds for prey, the Wager Bay and western Melville Peninsula area is highly suitable for nesting peregrine falcons. We suspect that more nests remain to be discovered at Wager Bay, and that the 15 sites located on Melville Peninsula represent only a small fraction of the nest sites there and on the Rae Isthmus. The entire area of northeastern Keewatin probably produces several hundred peregrine falcons each year.

Table 7. Occupancy and productivity of peregrine falcons in Arctic North America.

Area ^a	Total known sites	Occupied 1975	Number young produced	Number of sites producing
West Greenland	9	8	12	5
Ungava coast	27	11	16	9
East coast	5	0	0	0
Hudson Bay				
Interior Barrens	16	1	3	1
Central Arctic coast (NWT)	27	13	21	11
Horton River	15	5	9	3
Banks Island	14	7	18	6
North Slope (YT)	12	5	-	?
Northeast Alaska	28	3	-	2+
Colville River	46	12	-	?
Totals (1975)	199	65	79+	37+
Wager Bay (1976)	14	14	27+	11+
Wager Bay (1977)	31	27	53+	18+
Melville Peninsula (1977)	15	15	26+	10+
Totals (1977)	46	42	79+	28+

^a Data from Fyfe et al. (1976).

The question remains as to whether the productivity of peregrine falcons in northeastern Keewatin will continue.

Occupancy Rates of Peregrine Falcons

The problem of determining occupancy rates in peregrine falcon populations stems from the difficulty in differentiating between the use of alternate sites within a breeding territory, and actual loss of a pair from a nesting territory. Fyfe et al. (1976) state that "...whenever possible, breeding adults return to the same territory used the previous nesting season. Although new breeding pairs of peregrines have been found adjacent to existing pairs and in newly investigated areas, there is no evidence that would suggest this represents a shift to new territories or to remote areas." On the other hand, they continue, "Not to be confused with a shift of territory is the fact that frequently within an established nesting territory a pair may have several alternate nest sites. Such alternate nest sites, though most frequently found on the same cliff, in some instances have been recorded as far as 1.16 km from a previously used scrape."

Without individually recognizable birds, the choice between a new pair and a previously known pair is impossible to make with certainty. We believe that sites P_{3A} , P_{5A} and P_{11A} should be considered alternate nest sites to sites P_3 , P_5 and P_{11} which were occupied by peregrines in 1976 but not in 1977 (Table 1). We feel that these sites are alternates because they are closer to the previously occupied sites than the minimum distance which we have observed between simultaneously occupied sites. Similarly, we cannot consider that the pairs of peregrine falcons which occupied sites P_{11} and P_{14}

in 1976 were lost to the population in 1977 simply because gyrfalcons usurped their nest sites; these peregrines may have nested elsewhere. According to Beebe (1977), replacement of peregrines at nest sites by gyrfalcons which arrive and set up territories earlier than peregrines is natural and common. He wrote "The early arrival of the gyrfalcons on their territories permits their uncontested occupancy of such nests and their arrogant aggressiveness toward other large birds of prey assures their retention." Only site P₈ is considered to have actually been abandoned. Thus we feel that the maximum re-occupancy rate (91%) calculated for 1977 is likely closer to the true situation for the Wager Bay population than is the minimum value (54%).

If the occupancy rate were 90%, it represents a much higher rate than that currently seen in other populations in the Canadian Arctic (Table 8). However, since all the known peregrine sites at Wager Bay were discovered in either 1976 or 1977, occupancy rates there are perhaps not directly comparable to other areas where declines in occupancy rate have been measured over longer time spans.

Another reason for assuming that the Wager Bay and Melville Peninsula populations do not represent depleted populations is that nest spacing is quite uniform, and allowing for lower prey densities in the arctic environment, comparable to that found in other healthy peregrine populations (Table 9). If the populations of peregrine falcons in northeastern Keewatin had declined, one would expect much less closely and less uniformly spaced nests.

Table 8. Comparison of site occupancy by peregrine falcons at Wager Bay, with other areas in the Canadian Arctic.^a

Area	Sites checked	Sites occupied	Percent occupancy
Ungava Bay	25	9	44%
Thelon River	13	1	8%
Central Arctic coast (NWT)	27	12	48%
Horton River	15	5	33%
North Slope (YT)	11	4	36%
Total	91	31	34%
Wager Bay maximum ^b	11	10	91%
Wager Bay minimum ^b	13	7	54%

^a Data from Fyfe et al. (1976).

^b See text for explanation.

Changes in Productivity in Peregrine Falcon Populations

The productivity rate of the northeastern Keewatin peregrines was remarkably similar between years (Table 3) and between areas. The productivity/successful pair was higher than that observed in most areas of the Arctic in 1975 (Table 9), and was near the maximum which could be expected for the species (Hickey 1969).

Two aspects deserve additional comment. First, the lack of correlation in productivity between years at individual nest sites (Fig. 2) suggests that pesticide pollution is not affecting the population. If pesticides must reach a threshold level before metabolism or behaviour are altered enough to affect productivity, then one would expect some pairs to consistently produce well while others would consistently produce poorly. Fyfe (pers. comm.) believes that this is why some pairs keep producing normally while the overall productivity and occupancy of a population is declining. This was not observed at Wager Bay. Such an analysis assumes, of course, that pairs are occupying the same nest sites each year. This cannot be determined with certainty without individually recognizable birds.

Second, the observation that sites visited in 1976 produced significantly less in 1977 than did previously unvisited sites (Table 3) raises the possibility that disturbance may produce delayed effects. Hopefully, this observation was due to chance, but future studies should address delayed effects. Grier (1969) did not detect any delayed effects on productivity of bald eagles (Haliaeetus leucocephalus) resulting from his having visited the nests.

Table 9. Comparison of productivity in Arctic peregrine falcon populations.

Area	Year	Pair with young	Young/ pair	Young/ successful pair
Western Greenland	1972	7	2.3	2.6
	1973	9	2.6	2.7
	1974	5	3.0	3.0
	1975	5	2.0	2.4
Ungava Bay	1970	7	1.3	1.71
	1975	9	1.78	1.78
Thelon River	1970	3	2.00	2.67
	1975	1	3.0	3.00
Central Arctic coast (NWT)	1975	11	1.75	1.91
Banks Island	1975	6	3.00	3.00
Horton River	1973	2	0.6	1.33
	1975	3	1.8	3.00
Wager Bay	1976	11	2.08	2.45
	1977	18	2.21	2.94
Melville Peninsula	1977	10	2.60	2.60

Productivity of Other Raptors

Gyrfalcons apparently occupied sites at about the same rate in 1976 and 1977. Our studies were conducted too late in the summer to determine their productivity. At Wager Bay, rough-legged hawks had a much lower occupancy rate in 1977 than in 1976, and as far as we know, did not successfully produce young in 1977. Reproduction by rough-legged hawks varies from year to year because their prey (microtine rodents) are cyclic. We had thought that rough-legged hawks at Wager Bay might be less variable in their rate of reproduction than populations in some other areas because arctic ground squirrels (Spermophilus undulatus) were abundant in the Wager Bay area, and available as alternate prey. However, although ground squirrels were brought to the nest by rough-legged hawks later in the season, these alone were apparently not sufficient to allow successful raising of young. Ground squirrels may emerge too late in the summer to contribute to successful egg-laying, or perhaps only juvenile squirrels which emerge later are vulnerable to attack by rough-legged hawks. It is noteworthy that rough-legged hawks on Melville Peninsula produced young in 1977 while those at Wager Bay did not. Thus reproductive failures were apparently not synchronous over very large geographical areas.

RECOMMENDED FUTURE STUDIES

The larger number of highly productive peregrine falcon pairs around Wager Bay - Melville Peninsula makes the area ideal for long-term field studies of an apparently healthy population of arctic peregrine falcons.

Long-term studies would be valuable in answering the following questions:

1. What is the degree of fidelity of male and female falcons to each other and to particular nesting territories?
2. Over how wide an area do young falcons produced in a given area disperse when establishing territories in following seasons?
3. Where do peregrine falcons from northeastern Keewatin winter, and by what routes do they migrate to and from these areas?
4. What levels of contaminants are being carried by peregrine falcons and their prey, and how do these affect reproduction and behaviour?
5. What is the effect of human disturbance on falcon populations?

The answers to most of the above questions require continuous monitoring of the population and its reproduction for several years, and the gradual building up of a substantial proportion of individually recognizable, marked birds in the population. From large numbers of visibly marked individuals, statistical information on pair fidelity, fidelity to nest sites, dispersal patterns of young, location of wintering areas, and migration routes could be collected. Continuous monitoring of the population would make it clear if some pairs consistently experienced reproductive failure, and if eggs of such pairs contain high levels of chemical contaminants. If high levels of contaminants were confirmed in the population, perhaps these could be correlated with use of particular prey species or particular wintering areas.

Finally, the Wager Bay - Melville Peninsula population is the only one in North America large enough to allow controlled studies of the effect of disturbance on peregrine falcons. Such studies are desirable to anticipate disturbance problems should the current proposal to make Wager Bay a National Park be carried out.

ACKNOWLEDGEMENTS

This work was supported by the Environment-Social program (Arctic Island Pipeline Project) of the Department of Indian Affairs and Northern Development Canada, and by Parks Canada.

We thank M. L. Broderick, J. Burnford, J. Donaldson, and S. Stephansson for assistance in the field. Mark Crossman contributed many hours of safe and skillful flying without which the surveys could not have succeeded.

R. Fyfe and S. Stephansson of the Canadian Wildlife Service provided the bands used and offered valuable suggestions regarding the field work.

U. Banisch, I. McT. Cowan, R. Fyfe, S. Johnson, D. Mossop, R. W. Nelson and S. Stephansson read the manuscript and made many helpful suggestions.

LITERATURE CITED

Beebe, F.L. 1977. Field Studies of the Falconiformes of British Columbia. Vultures, hawks, falcons, eagles. Occ. paper. B.C. Prov. Mus. No. 17 Victoria. 163 pp.

Fyfe, R.W., S.A. Temple, and T.J. Cade. 1976. The 1975 North American peregrine falcon survey. Can. Field Nat. 90: 228-273.

Godfrey, W.E. 1970. Canada's endangered birds. Can. Field Nat. 84: 24-26.

Grier, J.W. 1969. Bald eagle behaviour and productivity responses to climbing to nests. J. Wildl. Manage. 33: 961-966.

Gunn, W.W.H. 1975. Impact (of the proposed Mackenzie Valley gas pipelines) on the living environment: birds. Transcripts Mackenzie Valley Pipeline Inquiry. Yellowknife. Vol. 89: 13398-12433.

Hickey, J.J., ed. 1969. Peregrine falcon populations: their biology and decline. Univ. Wis. Press. Madison. 596 pp.

Newton, I. 1976a. Raptor research and conservation during the last five years. Can. Field Nat. 90: 225-227.

Newton, I. 1976b. Population limitation in diurnal raptors. Can. Field. Nat. 90: 274-300.

