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ABSTRACT 
Climate change is projected to have substantial impacts on biotic and abiotic conditions 
globally, particularly in northern regions such as the Northwest Territories (NWT) where 
temperatures are warming at a faster rate than the global average. Environmental changes 
such as altered temperature and precipitation are likely to influence biodiversity by affecting 
habitats (e.g. vegetation shifts and sea ice decline) and resource availability, leading to 
potential changes in species distributions, predator-prey interactions and phenology. 
Species at risk are especially vulnerable to these threats. Ecofish Research Ltd. conducted a 
literature review to identify and summarize projected changes to biotic and abiotic 
conditions in response to climate change in the NWT and potential impacts to species at risk. 
Specifically, we determined projected changes to climate and physical parameters in the 
NWT. We then examined potential effects of climate change on habitat, biotic interactions, 
phenology, physiological thresholds, and population level parameters for species at risk in 
the NWT. The NWT was projected to experience substantial climate change in the future, 
including continued temperature rise, sea ice decline, changes in precipitation, increased 
extreme weather events, declines in snow cover, and rising sea levels. We found that climate 
change was projected to negatively affect the one plant species on the NWT List of Species at 
Risk (hairy braya) (Braya pilosa). For all mammals examined, climate change was projected 
to negatively affect habitat availability (e.g. changes to vegetation and sea ice) and biotic 
interactions (e.g. predator-prey or food availability); caribou (Rangifer tarandus) (especially 
Peary caribou) (R. tarandus pearyi) and polar bears (Ursus maritimus) were identified as 
particularly vulnerable to climate change effects. Avian habitat loss as well as changes to 
phenology and breeding success were projected to occur due to climate change. Climate 
change was projected to negatively affect invertebrate habitats (especially through extreme 
weather events), species richness, and survival (particularly for bumble bees). Lastly, 
climate change was projected to negatively affect northern leopard frog (Lithobates pipiens) 
and western toad (Anaxyrus boreas) habitats, phenology (breeding and hibernation) and 
physiology. This report, and the literature cited therein, will help inform evaluation of 
threats to biodiversity resulting from climate change and contribute to assessments of 
threats and limiting factors for NWT Species at Risk Committee Status Reports. 
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INTRODUCTION 
Ecofish Research Ltd. (Ecofish) have conducted a literature review and synthesis on behalf 
of the Government of the Northwest Territories’ (GNWT) Department of Environment and 
Climate Change (ECC) to describe anticipated changes to biotic and abiotic conditions in the 
context of climate change to assist with interpretation of threats to biodiversity in the 
Northwest Territories (NWT). The review focused on information that supports an 
interpretation of the Threats and Limiting Factors assessment in the Detailed Instructions 
for Preparation of a Species at Risk Committee (SARC) Status Report: Scientific Knowledge 
Component (GNWT SARC 2019).  

Climate change will have far reaching impacts on biotic and abiotic conditions in the NWT 
and other northern regions where temperatures are warming at a faster rate than the global 
average. Changes that are already being observed and are expected to continue at an 
increased rate include loss of sea ice and rising sea levels (Vermaire et al. 2013, Kwok 2018), 
permafrost degradation (Derksen et al. 2019), coastal erosion (Obu et al. 2017), shifts in the 
habitat cover and range due to a northward advance of forest cover and shrubification of 
tundra (Cameron and Lantz 2016, Kitagawa et al. 2020), and changes to spatio-temporal 
patterns of natural disturbance (Rupp et al. 2006, Price et al. 2013). These changes and 
others are likely to have critical effects on biodiversity as rates of change may outstrip the 
ability of species to adapt or migrate, with loss of niche habitats increasing the vulnerability 
of already at-risk species.  

The GNWT enacted the Species At Risk (NWT) Act in 2009 (GNWT 2009) in recognition of the 
shared responsibility to protect and conserve the rich biological diversity of the NWT. The 
Act requires that “the conservation of species at risk should use the best available 
information, including Aboriginal traditional knowledge, community knowledge and 
scientific knowledge and be based on an ecological approach.” (GNWT 2009). This report 
helps to satisfy the requirement to use the best available scientific knowledge to help guide 
the interpretation of threats to species at risk in the NWT. In particular, this report focuses 
on threats to species at risk in the NWT resulting from the direct and indirect effects that are 
projected to occur from climate change that may interact with a species’ habitat, biotic 
interactions, phenology, physiological thresholds, and population level parameters. 
Projections of change to climate and physical parameters are presented, and then potential 
impacts to species at risk within the NWT are summarized for each species. These 
summaries are intentionally brief and point the reader to resources for more detailed 
investigation where necessary. The expectation is that this information will help to inform 
an interpretation of threats to each species because of climate change to aid in classification 
of those species by SARC. 
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METHODS 
Given the abundance of climate change literature, a structured three-step approach to the 
literature review was used to maintain focus on key information. First, the project team 
assembled references previously collected by Ecofish staff as a starting point for the body of 
knowledge. Second, recognizing the Intergovernmental Panel on Climate Change (IPCC) 
Assessment Reports (ARs) as the most thorough and concise summary of climate change 
impacts available, AR5 Climate Change 2014: Impacts Adaptation and Vulnerability was used 
as a starting point to identify anticipated changes and risks to species and ecosystems that 
occur in the NWT. Since the NWT straddles the Arctic Circle, we drew from both Section 26: 
North America (Romero-Lankao et al. 2014) and Section 28: Polar Regions (Larsen et al. 
2014) to identify key information sources relating to trends affecting NWT species and 
ecosystems. Further searches were conducted to gather and synthesize literature published 
in years since the publication of AR5. As a starting point, searches were conducted for papers 
that cite those resources from AR5 that are most pertinent to NWT species and ecosystems 
and climate change impacts. Searches were focused on 2013 through 2020 to reduce results 
to those published since AR5. Finally, the search was expanded using a number of search 
terms agreed upon by the project team. The purpose of limiting search terms was to ensure 
searches were targeted and repeatable, and to keep the number of resources requiring 
review to a manageable level. Where time allowed, searches for reports that cite key 
information sources identified through this process were conducted, where highly pertinent.  

Reference citation software, Mendeley, was used to provide a database of references 
collected during the literature review. This database and PDF documents (where available) 
are provided with this report, along with tabular summaries of each reference in a 
spreadsheet file (“Ecofish_GNWTClimateChange_ReferenceTracker.xlsx”). Key information 
provided in the spreadsheets include biotic and abiotic conditions requested by ECC as well 
as others identified through the literature research. Additional parameters such as the 
associated taxa, geographical range, representative concentration pathways (RCPs), etc. 
were added to help authors and reviewers to easily focus on topics of interest or concern. 
Further, each row included a summary of key points for each citation.  

Climate projections were collated for six locations across the NWT (Yellowknife, 
Tuktoyaktuk, Prince Patrick Island, Fort Simpson, Norman Wells and CanTung Mine) 
selected to represent differing ecological regions throughout the Territory and provide 
representation for any variation among climate effects therein. Projected changes in 
seasonal and annual air temperature, precipitation, growing season length, and the number 
of frost free days under both RCP4.5 and RCP8.5 scenarios were obtained using ClimateNA 
(Wang et al. 2016), a tool which provides interpolated historical data from weather stations 
and locally downscaled future projections. RCP4.5 and RCP8.5 scenarios correspond to two 
trajectories for atmospheric greenhouse gas concentrations that may occur under depending 
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on the level of action undertaken to reduce global emissions. RCP4.5 represents a moderate 
scenario in which emissions peak during the 2040s and then decline, while RCP8.5 assumes 
that emissions continue to rise for the remainder of the 21st century. The relative severity of 
respective climate effect on each variable was evaluated by comparing projections related to 
each RCP to interpolated historical data for the 1961-1990 climate normal (hereafter 
referred to as “baseline period”), and the most recent decade between 2011-2020.  

Climate projections for other variables (permafrost extent, active layer thickness, and sea 
ice) that were not available for individual representative locations (either through 
ClimateNA or other available research) were summarized on a general basis according to 
information from peer-reviewed literature and contained in AR5 (IPCC 2014).  

Focal species were selected based on a list provided by the GNWT for this project. Several 
species that are not currently listed in the Territory but are under consideration for listing 
were identified as optional for inclusion. Due to resource constraints, these optional species 
(e.g. peregrine falcon, American white pelican) were not included in this review.  

At the species level, climate change interactions focused on the following categories:  

• Physiological thresholds, 
• Habitat quantity, quality, access, 
• Biotic interactions (e.g. predator/prey, disease, invasive species), 
• Phenology (e.g. timing of food, pollinators, migration, etc.), and 
• Population dynamics (e.g. survival rates, reproduction rates, abundance). 

Results of this synthesis are meant to inform the completion of NWT SARC threats and 
limiting factors assessments. Thus, our synthesis was focused on the parameters used for 
these assessments, which include the likelihood (based on timing and probability of effect 
within ten years), causal certainty (or confidence that a threat will have an impact on a 
population), and magnitude (i.e., spatial extent, severity, temporality, and overall level of 
concern) of climate change interactions. Summaries of the most important climate change 
interactions at the Kingdom/Phylum are provided in the Discussion. 
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RESULTS 
Projections of Change 

Details from the current state of knowledge on climate change that are summarized in the 
IPCC AR5 report (2014) describe existing and predicted effects from climate change relevant 
to the NWT and include the following: 

• Substantial warming to date relative to historical baseline conditions for polar and 
high latitude regions, with rates of future warming expected to continue to exceed 
the global average over the next decades, 

• Large decreases in active sea ice have occurred over recent decades, with current 
projections suggesting the Arctic Ocean is likely to become nearly free of ice in 
summer during this century, 

• Climate change will continue to drive increasing weather intensity and severity, 
including more frequent extreme events (e.g. flooding and drought), 

• Rising temperatures will cause decreases in the duration and extent of winter snow 
cover, earlier seasonal snowmelt timing, and enhance existing rates of permafrost 
thaw, and 

• Oceans and coastal areas will see rising sea levels, and greater intensity and 
frequency of storms and storm surges.  

Associated impacts from these changes (among many) include: 

• Continued displacement of tundra by boreal forest, along with increases in treeline 
elevation for mountainous areas, with between 11-50% of tundra being displaced 
by forest within 100 years, 

• Increasing shrub cover, 
• Northward expansion of tundra at the highest latitudes, 
• Changes in water storage and runoff patterns, as well as the type and abundance of 

wetland habitats, 
• Range expansion in altitude and latitude of insect pests along with decreased over-

wintering mortality (due to warmer winters) may lead to greater frequency and 
extent of pest outbreaks, 

• Shifts in timing and magnitude of biomass production (for example insect 
emergence) resulting in potential mismatch among food webs, 

• Changes in primary productivity (increases) but also decreases in forage quality 
(due to lower nitrogen content), and 

• Impacts to herbivores including ungulates from changes in vegetation includes 
decreases in lichen biomass that are key fodder for reindeer (some North American 
herds have already declined by 75-90%). Ungulate populations may face continued 
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and increasing pressure from other climate changes such as increased snowpacks 
and more frequent rain-on-snow events that restrict access to fodder during winter. 

Historical and future predicted (RCP4.5 and RCP8.5 scenarios) local climate values obtained 
for each of the six selected locations across the NWT (Yellowknife, Tuktoyaktuk, Prince 
Patrick Island, Fort Simpson, Norman Wells and CanTung Mine) are summarized in Table 1-
Table 6.  

Mean annual air temperatures are expected to continue to increase under both RCP4.5 and 
RCP8.5 scenarios. Compared to historical baseline conditions (1961-1990), temperatures 
during the most recent decade from 2011-2020 have already increased in the NWT by 
between +1.5°C (at Fort Simpson) to +2.5°C at Tuktoyaktuk; consistent with projections that 
temperature increases will be greatest at higher latitudes. Based on RCP4.5 and RCP8.5 
scenarios for the 2050s (based on projected average conditions for 2040-2069), annual 
mean temperatures across all six selected locations are likely to increase by between +3.1°C 
to +4.9°C, and +3.7°C to +6.1°C, respectively. Corresponding projections for the 2080s (based 
on conditions for 2070-2100) are for temperatures to increase by between +3.7°C to +6.1°C 
(RCP4.5) and +6.2°C to +10.8°C (RCP8.5) (Table 1-Table 6). On a seasonal basis, relative 
increases in air temperature are projected to be greatest during winter and lowest during 
summer. For example, RCP8.5 projections for the 2080s suggest average air temperature at 
Tuktoyaktuk is likely to be 13.7°C warmer in winter but only 5.1°C warmer during summer.  

Baseline annual precipitation (1961-1990) varies widely across all six locations from 94 
mm/year on Prince Patrick Island to 510 mm/year at CanTung Mine. Relative to baseline 
conditions, average precipitation has varied over the most recent decade (2011-2020) with 
increases in precipitation at some locations and decreases at others. Decreases in 
precipitation for some areas for the 2011-2020 period contradicts longer-term trends that 
indicate a widespread increase in mean precipitation over multiple decades (Bush and 
Lemmen 2019) but may be influenced by shorter-term climate-patterns or stochasticity. 
Over the long-term, increased precipitation is projected for all locations under both RCP4.5 
and RCP8.5 scenarios. Projected changes in precipitation for the 2050s range from +24 
mm/year to +64 mm/year (RCP4.5), and +32 mm/year to +81 mm/year (RCP8.5) across the 
territory. By the 2080s, projected changes in precipitation range from +31 mm/year to +83 
mm/year (RCP4.5), and +56 mm/year to +130 mm/year (RCP8.5) (Table 1-Table 6). While 
mean annual precipitation is lowest at the most northern locations, the proportional 
increase in precipitation at these locations is anticipated to be the highest. For example, an 
increase in mean annual precipitation of +56 mm/year (RCP8.5) at Prince Patrick Island 
represents a 60% increase overall relative to baseline conditions between 1961-1990. On a 
seasonal basis, projected increases in precipitation are largest in summer and fall months for 
both scenarios and future time periods.  
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Growing season length was measured based on the average number of continuous days 
without frost during each year and varied across all six locations primarily according to 
latitude and elevation, ranging from 0 days on Prince Patrick Island to 140 days in 
Yellowknife during the baseline period (1961-1990). Longer growing seasons have been 
observed over the most recent decade (2011-2020); average growing season length 
increased between +4 to +21 days across all locations except Prince Patrick Island (which 
remained too cold to have a growing season) during this period. Under RCP4.5 and RCP8.5 
scenarios, growing season length at all locations is projected to increase between +19 to +45 
days or +24 to +55 days by the 2050s, respectively; and between +28 to +55 days or +40 to 
+90 days by the 2080s. Projected increases in the number of frost-free days due to warming 
temperatures follow a similar and consistent pattern across all locations.  

Model projections indicate that more southerly locations (Yellowknife, CanTung Mine and 
Fort Simpson) will likely see decreased snowfall because increases in precipitation will 
include shifts to a higher proportion of precipitation falling as rain (IPCC 2014). At more 
northern locations (Tuktoyaktuk, Prince Patrick Island and Norman Wells), where average 
temperatures remain colder, snowfall is projected to increase, however, this increase will be 
proportionally less than the overall increase in precipitation.  

Warming temperature conditions are expected to have profound effects on permafrost 
because continued warming will enhance rates of permafrost thaw and decrease overall 
permafrost extent (IPCC 2014). Existing observations suggest that active layer thickness has 
increased by approximately 10% since 2000 in the MacKenzie Valley (Derksen et al. 2019). 
Currently, available projections of changes to permafrost extent during the 21st century do 
not provide sufficient resolution to provide specific projections for each of the six chosen 
locations. However, larger-scale model projections suggest that by the end of the century 
permafrost in Canada will be reduced to between 54% (RCP4.5) and 26% (RCP8.5) of its 
historical extent, with the later scenario resulting in permafrost retreating to north of 65°N 
(Guo and Wang 2016).  

Additionally, warming temperature trends are anticipated to result in the continuation of 
observed declines in Arctic Sea ice. Like permafrost, projections are not explicitly available 
for relevant selected locations in the NWT (i.e., Tuktoyaktuk and Prince Patrick Island). 
Broader observations however, indicate that summer sea ice area (particularly multi-year 
ice area) across the Canadian Arctic has declined at a rate of approximately 5-20% per 
decade since 1968 (Mudryk et al. 2018, Bush and Lemmen 2019, Derksen et al. 2019). The 
Canadian Arctic has also experienced declines in sea ice concentration in all seasons from 
1981-2015, with the Canadian Arctic Archipelago having the strongest declines in sea ice 
concentration in summer and fall (Bush and Lemmen 2019). The Beaufort Sea and Canadian 
Arctic Archipelago have experienced the largest declines in multi-year ice, at rates of 
approximately 7% and 9% per decade, respectively (Bush and Lemmen 2019). Current 
projections for all emissions scenarios indicate continued reductions to sea ice concentration 
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and extent across the Canadian Arctic due to increased temperatures and resulting increases 
in melt season duration, which will likely result in most regions of the Canadian Arctic 
becoming sea ice-free for at least part of the summer period by 2050 (Bush and Lemmen 
2019). Moreover, perennial sea ice will continue to be replaced by thinner seasonal sea ice 
that melts faster, contributing to further sea ice decline (Bush and Lemmen 2019, Derksen 
et al. 2019). 
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Table 1. Projections of change to physical climate parameters from normal (1961-1990) at Yellowknife. Differences relative to 
baseline climate conditions from 1961-1990 are included in parentheses.  

 
 
Table 2. Projections of change to physical climate parameters from normal (1961-1990) at Tuktoyaktuk. Differences relative to 
baseline climate conditions from 1961-1990 are included in parentheses.  

 
  

Parameter

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Annual -5.5 -30.1 18.8 -3.8 (+1.7) -26.7 (+3.4) 19.4 (+0.6) -2 (+3.5) -25 (+5.1) 21.1 (+2.3) -1.3 (+4.2) -23.9 (+6.2) 21.5 (+2.7) -0.9 (+4.6) -23.4 (+6.7) 21.9 (+3.1) 1.7 (+7.2) -19.2 (+10.9) 23.9 (+5.1)
Winter -25.6 -30.1 -21 -22.5 (+3.1) -26.7 (+3.4) -18.4 (+2.6) -20.8 (+4.8) -25 (+5.1) -16.6 (+4.4) -19.8 (+5.8) -23.9 (+6.2) -15.7 (+5.3) -19.3 (+6.3) -23.4 (+6.7) -15.3 (+5.7) -15.6 (+10) -19.2 (+10.9) -12 (+9)
Spring -7.3 -13.4 -1.2 -6 (+1.3) -12.2 (+1.2) 0.1 (+1.3) -4.1 (+3.2) -9.9 (+3.5) 1.6 (+2.8) -3.4 (+3.9) -9.1 (+4.3) 2.3 (+3.5) -3.1 (+4.2) -8.8 (+4.6) 2.5 (+3.7) -0.7 (+6.6) -6.2 (+7.2) 4.8 (+6)
Summer 13.8 8.8 18.8 14.8 (+1) 10.2 (+1.4) 19.4 (+0.6) 16.2 (+2.4) 11.3 (+2.5) 21.1 (+2.3) 16.7 (+2.9) 11.9 (+3.1) 21.5 (+2.7) 17.1 (+3.3) 12.3 (+3.5) 21.9 (+3.1) 19.1 (+5.3) 14.3 (+5.5) 23.9 (+5.1)
Fall -3 -6.5 0.4 -1.4 (+1.6) -4.6 (+1.9) 1.8 (+1.4) 0.6 (+3.6) -2.6 (+3.9) 3.7 (+3.3) 1.4 (+4.4) -1.8 (+4.7) 4.5 (+4.1) 1.8 (+4.8) -1.3 (+5.2) 4.8 (+4.4) 4.2 (+7.2) 1.3 (+7.8) 7.1 (+6.7)
Annual 277 - - 245 (-32) - - 312 (+35) - - 325 (+48) - - 324 (+47) - - 352 (+75) - -
Winter 45 - - 41 (-4) - - 52 (+7) - - 53 (+8) - - 54 (+9) - - 58 (+13) - -
Spring 42 - - 36 (-6) - - 48 (+6) - - 50 (+8) - - 49 (+7) - - 54 (+12) - -
Summer 100 - - 102 (+2) - - 110 (+10) - - 114 (+14) - - 114 (+14) - - 120 (+20) - -
Fall 91 - - 67 (-24) - - 103 (+12) - - 108 (+17) - - 108 (+17) - - 120 (+29) - -
as snow 134 - - 101 (-33) - - 126 (-8) - - 124 (-10) - - 122 (-12) - - 116 (-18) - -

Length of growing season1 99 - - 120 (+21) - - 122 (+23) - - 124 (+25) - - 129 (+30) - - 142 (+43) - -
Number of frost-free days 127 - - 140 (+13) - - 150 (+23) - - 155 (+28) - - 158 (+31) - - 174 (+47) - -
1Equal to the number of continuous frost-free days per year

2050s 2080s
RCP4.5 RCP8.5 RCP4.5

Precipitation 
(mm)

2011 - 2020
RCP8.5

Air 
Temperature 
(°C) 

1961-1990

Parameter

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Annual -11 -30.3 11.8 -8.5 (+2.5) -26 (+4.3) 12.2 (+0.4) -6.4 (+4.6) -23.5 (+6.8) 14 (+2.2) -5.5 (+5.5) -22 (+8.3) 14.5 (+2.7) -5.1 (+5.9) -21.4 (+8.9) 14.8 (+3) -1.9 (+9.1) -15.7 (+14.6) 16.6 (+4.8)
Winter -27.1 -30.3 -23.8 -23.2 (+3.9) -26 (+4.3) -20.4 (+3.4) -20.6 (+6.5) -23.5 (+6.8) -17.7 (+6.1) -19.2 (+7.9) -22 (+8.3) -16.3 (+7.5) -18.6 (+8.5) -21.4 (+8.9) -15.8 (+8) -13.4 (+13.7) -15.7 (+14.6) -11 (+12.8)
Spring -16 -19.7 -12.4 -13.5 (+2.5) -17 (+2.7) -10 (+2.4) -12 (+4) -15.4 (+4.3) -8.7 (+3.7) -11.2 (+4.8) -14.4 (+5.3) -7.9 (+4.5) -10.9 (+5.1) -14.1 (+5.6) -7.7 (+4.7) -7.9 (+8.1) -10.8 (+8.9) -5 (+7.4)
Summer 8 4.2 11.8 8.5 (+0.5) 4.9 (+0.7) 12.2 (+0.4) 10.3 (+2.3) 6.6 (+2.4) 14 (+2.2) 10.8 (+2.8) 7.2 (+3) 14.5 (+2.7) 11.2 (+3.2) 7.5 (+3.3) 14.8 (+3) 13.1 (+5.1) 9.5 (+5.3) 16.6 (+4.8)
Fall -8.9 -11.3 -6.5 -5.9 (+3) -8 (+3.3) -3.8 (+2.7) -3.3 (+5.6) -5.1 (+6.2) -1.4 (+5.1) -2.4 (+6.5) -4.2 (+7.1) -0.6 (+5.9) -1.9 (+7) -3.7 (+7.6) -0.1 (+6.4) 0.6 (+9.5) -1 (+10.3) 2.2 (+8.7)
Annual 143 - - 146 (+3) - - 171 (+28) - - 178 (+35) - - 180 (+37) - - 204 (+61) - -
Winter 20 - - 18 (-2) - - 24 (+4) - - 25 (+5) - - 26 (+6) - - 30 (+10) - -
Spring 16 - - 15 (-1) - - 18 (+2) - - 19 (+3) - - 19 (+3) - - 22 (+6) - -
Summer 62 - - 73 (+11) - - 75 (+13) - - 77 (+15) - - 78 (+16) - - 89 (+27) - -
Fall 45 - - 40 (-5) - - 54 (+9) - - 56 (+11) - - 57 (+12) - - 63 (+18) - -
as snow 76 - - 65 (-11) - - 79 (+3) - - 80 (+4) - - 79 (+3) - - 78 (+2) - -

Length of growing season1 70 - - 83 (+13) - - 104 (+34) - - 109 (+39) - - 113 (+43) - - 124 (+54) - -
Number of frost-free days 92 - - 101 (+9) - - 116 (+24) - - 120 (+28) - - 123 (+31) - - 139 (+47) - -
1Equal to the number of continuous frost-free days per year

2050s 2080s
RCP4.5 RCP8.5 RCP4.5

Precipitation 
(mm)

2011 - 2020
RCP8.5

Air 
Temperature 
(°C) 

1961-1990
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Table 3. Projections of change to physical climate parameters from normal (1961-1990) at Prince Patrick Island. Differences 
relative to baseline climate conditions from 1961-1990 are included in parentheses.  

 
 
Table 4. Projections of change to physical climate parameters from normal (1961-1990) at Fort Simpson. Differences relative 
to baseline climate conditions from 1961-1990 are included in parentheses.  

 
 
 
  

Parameter

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Annual -18.5 -37 3 -16.5 (+2) -34 (+3) 3.8 (+0.8) -13.6 (+4.9) -30.3 (+6.7) 4.2 (+1.2) -12.4 (+6.1) -28.4 (+8.6) 4.4 (+1.4) -11.9 (+6.6) -27.6 (+9.4) 4.8 (+1.8) -7.7 (+10.8) -20 (+17) 6.4 (+3.4)
Winter -34.1 -37 -31.2 -31.1 (+3) -34 (+3) -28.2 (+3) -27.5 (+6.6) -30.3 (+6.7) -24.7 (+6.5) -25.6 (+8.5) -28.4 (+8.6) -22.9 (+8.3) -24.9 (+9.2) -27.6 (+9.4) -22.3 (+8.9) -17.6 (+16.5) -20 (+17) -15.3 (+15.9)
Spring -23.6 -26.4 -20.7 -21.8 (+1.8) -25 (+1.4) -18.6 (+2.1) -19.5 (+4.1) -22 (+4.4) -17 (+3.7) -18.6 (+5) -21 (+5.4) -16.2 (+4.5) -18.2 (+5.4) -20.6 (+5.8) -15.8 (+4.9) -14.6 (+9) -16.7 (+9.7) -12.6 (+8.1)
Summer 1 -0.9 3 1.8 (+0.8) -0.1 (+0.8) 3.8 (+0.8) 2.3 (+1.3) 0.4 (+1.3) 4.2 (+1.2) 2.6 (+1.6) 0.8 (+1.7) 4.4 (+1.4) 2.9 (+1.9) 1.1 (+2) 4.8 (+1.8) 4.5 (+3.5) 2.7 (+3.6) 6.4 (+3.4)
Fall -17.5 -20.3 -14.7 -15.1 (+2.4) -18 (+2.3) -12.2 (+2.5) -9.8 (+7.7) -12 (+8.3) -7.7 (+7) -8.1 (+9.4) -10 (+10.3) -6.1 (+8.6) -7.4 (+10.1) -9.3 (+11) -5.4 (+9.3) -2.9 (+14.6) -4.4 (+15.9) -1.4 (+13.3)
Annual 94 - - 99 (+5) - - 118 (+24) - - 126 (+32) - - 125 (+31) - - 150 (+56) - -
Winter 10 - - 11 (+1) - - 13 (+3) - - 14 (+4) - - 15 (+5) - - 20 (+10) - -
Spring 13 - - 19 (+6) - - 16 (+3) - - 16 (+3) - - 16 (+3) - - 20 (+7) - -
Summer 43 - - 44 (+1) - - 52 (+9) - - 55 (+12) - - 53 (+10) - - 62 (+19) - -
Fall 28 - - 25 (-3) - - 37 (+9) - - 40 (+12) - - 41 (+13) - - 49 (+21) - -
as snow 72 - - 74 (+2) - - 84 (+12) - - 87 (+15) - - 85 (+13) - - 88 (+16) - -

Length of growing season1 0 - - 0 (0) - - 42 (+42) - - 55 (+55) - - 55 (+55) - - 90 (+90) - -
Number of frost-free days 31 - - 42 (+11) - - 52 (+21) - - 59 (+28) - - 64 (+33) - - 93 (+62) - -
1Equal to the number of continuous frost-free days per year

Precipitation 
(mm)

Air 
Temperature 
(°C) 

2050s 2080s
RCP4.5 RCP8.5 RCP4.5

2011 - 2020
RCP8.5

1961-1990

Parameter

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Annual -3.5 -28.5 21.9 -2 (+1.5) -26.2 (+2.3) 23.4 (+1.5) -0.2 (+3.3) -23.8 (+4.7) 24 (+2.1) 0.5 (+4) -22.8 (+5.7) 24.6 (+2.7) 0.8 (+4.3) -22.3 (+6.2) 24.9 (+3) 3.2 (+6.7) -18.7 (+9.8) 26.9 (+5)
Winter -23.9 -28.5 -19.2 -21.1 (+2.8) -26.2 (+2.3) -16 (+3.2) -19.5 (+4.4) -23.8 (+4.7) -15.1 (+4.1) -18.6 (+5.3) -22.8 (+5.7) -14.4 (+4.8) -18.2 (+5.7) -22.3 (+6.2) -14 (+5.2) -14.9 (+9) -18.7 (+9.8) -11.2 (+8)
Spring -2.3 -8.7 4.1 -1.2 (+1.1) -8.2 (+0.5) 5.8 (+1.7) 0.8 (+3.1) -5.4 (+3.3) 6.9 (+2.8) 1.4 (+3.7) -4.7 (+4) 7.5 (+3.4) 1.6 (+3.9) -4.4 (+4.3) 7.7 (+3.6) 3.8 (+6.1) -2.1 (+6.6) 9.7 (+5.6)
Summer 15.5 9 21.9 16.6 (+1.1) 9.7 (+0.7) 23.4 (+1.5) 17.8 (+2.3) 11.5 (+2.5) 24 (+2.1) 18.3 (+2.8) 12.1 (+3.1) 24.6 (+2.7) 18.7 (+3.2) 12.4 (+3.4) 24.9 (+3) 20.7 (+5.2) 14.5 (+5.5) 26.9 (+5)
Fall -3.3 -7.8 1.2 -2.2 (+1.1) -7.3 (+0.5) 2.9 (+1.7) 0 (+3.3) -4.2 (+3.6) 4.3 (+3.1) 0.8 (+4.1) -3.4 (+4.4) 5 (+3.8) 1.1 (+4.4) -3.1 (+4.7) 5.3 (+4.1) 3.3 (+6.6) -0.7 (+7.1) 7.4 (+6.2)
Annual 355 - - 374 (+19) - - 396 (+41) - - 408 (+53) - - 407 (+52) - - 442 (+87) - -
Winter 56 - - 61 (+5) - - 63 (+7) - - 65 (+9) - - 64 (+8) - - 70 (+14) - -
Spring 63 - - 60 (-3) - - 73 (+10) - - 75 (+12) - - 74 (+11) - - 83 (+20) - -
Summer 146 - - 165 (+19) - - 159 (+13) - - 163 (+17) - - 164 (+18) - - 171 (+25) - -
Fall 90 - - 88 (-2) - - 100 (+10) - - 105 (+15) - - 105 (+15) - - 117 (+27) - -
as snow 147 - - 144 (-3) - - 139 (-8) - - 136 (-11) - - 135 (-12) - - 130 (-17) - -

Length of growing season1 102 - - 106 (+4) - - 123 (+21) - - 129 (+27) - - 131 (+29) - - 146 (+44) - -
Number of frost-free days 137 - - 141 (+4) - - 157 (+20) - - 162 (+25) - - 164 (+27) - - 179 (+42) - -
1Equal to the number of continuous frost-free days per year

Air 
Temperature 
(°C) 

Precipitation 
(mm)

2050s 2080s
RCP4.5 RCP8.5 RCP4.5

2011 - 2020
RCP8.5

1961-1990
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Table 5. Projections of change to physical climate parameters from normal (1961-1990) at Norman Wells. Differences relative 
to baseline climate conditions from 1961-1990 are included in parentheses. 

 
 
Table 6. Projections of change to physical climate parameters from normal (1961-1990) at CanTung Mine. Differences relative 
to baseline climate conditions from 1961-1990 are included in parentheses.  

 
 

Parameter

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Annual -5.9 -29.3 20.9 -4 (+1.9) -26.2 (+3.1) 21.5 (+0.6) -2.4 (+3.5) -24.4 (+4.9) 22.9 (+2) -1.7 (+4.2) -23.4 (+5.9) 23.5 (+2.6) -1.4 (+4.5) -22.9 (+6.4) 23.7 (+2.8) 1.2 (+7.1) -19 (+10.3) 25.6 (+4.7)
Winter -25 -29.3 -20.7 -21.9 (+3.1) -26.2 (+3.1) -17.6 (+3.1) -20.4 (+4.6) -24.4 (+4.9) -16.3 (+4.4) -19.5 (+5.5) -23.4 (+5.9) -15.5 (+5.2) -19 (+6) -22.9 (+6.4) -15.2 (+5.5) -15.5 (+9.5) -19 (+10.3) -12.1 (+8.6)
Spring -6.1 -13.2 1 -4.6 (+1.5) -11.5 (+1.7) 2.3 (+1.3) -2.8 (+3.3) -9.6 (+3.6) 4.1 (+3.1) -2 (+4.1) -8.8 (+4.4) 4.7 (+3.7) -1.9 (+4.2) -8.6 (+4.6) 4.9 (+3.9) 0.6 (+6.7) -5.9 (+7.3) 7.1 (+6.1)
Summer 13.8 6.7 20.9 14.7 (+0.9) 7.9 (+1.2) 21.5 (+0.6) 16 (+2.2) 9.1 (+2.4) 22.9 (+2) 16.5 (+2.7) 9.6 (+2.9) 23.5 (+2.6) 16.8 (+3) 9.9 (+3.2) 23.7 (+2.8) 18.8 (+5) 11.9 (+5.2) 25.6 (+4.7)
Fall -6.2 -10.9 -1.4 -4.3 (+1.9) -9.2 (+1.7) 0.5 (+1.9) -2.5 (+3.7) -7 (+3.9) 1.9 (+3.3) -1.8 (+4.4) -6.2 (+4.7) 2.6 (+4) -1.5 (+4.7) -5.8 (+5.1) 2.9 (+4.3) 0.9 (+7.1) -3.3 (+7.6) 5.1 (+6.5)
Annual 318 - - 384 (+66) - - 367 (+49) - - 380 (+62) - - 379 (+61) - - 417 (+99) - -
Winter 52 - - 75 (+23) - - 60 (+8) - - 61 (+9) - - 62 (+10) - - 69 (+17) - -
Spring 44 - - 59 (+15) - - 51 (+7) - - 54 (+10) - - 53 (+9) - - 61 (+17) - -
Summer 141 - - 157 (+16) - - 161 (+20) - - 166 (+25) - - 167 (+26) - - 176 (+35) - -
Fall 81 - - 93 (+12) - - 95 (+14) - - 99 (+18) - - 98 (+17) - - 111 (+30) - -
as snow 138 - - 176 (+38) - - 146 (+8) - - 147 (+9) - - 146 (+8) - - 145 (+7) - -

Length of growing season1 82 - - 99 (+17) - - 101 (+19) - - 106 (+24) - - 110 (+28) - - 122 (+40) - -
Number of frost-free days 112 - - 124 (+12) - - 134 (+22) - - 138 (+26) - - 141 (+29) - - 155 (+43) - -
1Equal to the number of continuous frost-free days per year

Air 
Temperature 
(°C) 

Precipitation 
(mm)

2050s 2080s
RCP4.5 RCP8.5 RCP4.5

2011 - 2020
RCP8.5

1961-1990

Parameter

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Annual -5.5 -24 14.5 -3.7 (+1.8) -20.9 (+3.1) 15.5 (+1) -2.4 (+3.1) -19.8 (+4.2) 17.1 (+2.6) -1.8 (+3.7) -19.2 (+4.8) 17.7 (+3.2) -1.6 (+3.9) -18.7 (+5.3) 18 (+3.5) 0.7 (+6.2) -15.7 (+8.3) 20.1 (+5.6)
Winter -18.9 -24 -13.9 -16 (+2.9) -20.9 (+3.1) -11.1 (+2.8) -15.1 (+3.8) -19.8 (+4.2) -10.5 (+3.4) -14.6 (+4.3) -19.2 (+4.8) -10 (+3.9) -14.2 (+4.7) -18.7 (+5.3) -9.8 (+4.1) -11.6 (+7.3) -15.7 (+8.3) -7.5 (+6.4)
Spring -5.5 -11.3 0.4 -3.5 (+2) -9.1 (+2.2) 2 (+1.6) -2.5 (+3) -8.1 (+3.2) 3.1 (+2.7) -1.9 (+3.6) -7.5 (+3.8) 3.6 (+3.2) -1.8 (+3.7) -7.3 (+4) 3.8 (+3.4) 0.4 (+5.9) -4.9 (+6.4) 5.6 (+5.2)
Summer 8.4 2.3 14.5 9.9 (+1.5) 4.2 (+1.9) 15.5 (+1) 11 (+2.6) 4.8 (+2.5) 17.1 (+2.6) 11.6 (+3.2) 5.4 (+3.1) 17.7 (+3.2) 11.9 (+3.5) 5.7 (+3.4) 18 (+3.5) 13.9 (+5.5) 7.8 (+5.5) 20.1 (+5.6)
Fall -6 -10.5 -1.6 -5.2 (+0.8) -9.2 (+1.3) -1.2 (+0.4) -3.1 (+2.9) -7.1 (+3.4) 1 (+2.6) -2.4 (+3.6) -6.4 (+4.1) 1.7 (+3.3) -2.2 (+3.8) -6.2 (+4.3) 1.9 (+3.5) 0 (+6) -3.8 (+6.7) 3.8 (+5.4)
Annual 510 - - 470 (-40) - - 574 (+64) - - 591 (+81) - - 593 (+83) - - 640 (+130) - -
Winter 91 - - 85 (-6) - - 102 (+11) - - 105 (+14) - - 104 (+13) - - 114 (+23) - -
Spring 86 - - 75 (-11) - - 99 (+13) - - 102 (+16) - - 103 (+17) - - 113 (+27) - -
Summer 186 - - 193 (+7) - - 203 (+17) - - 209 (+23) - - 211 (+25) - - 218 (+32) - -
Fall 148 - - 116 (-32) - - 169 (+21) - - 175 (+27) - - 175 (+27) - - 195 (+47) - -
as snow 296 - - 238 (-58) - - 295 (-1) - - 293 (-3) - - 289 (-7) - - 275 (-21) - -

Length of growing season1 48 - - 63 (+15) - - 70 (+22) - - 77 (+29) - - 81 (+33) - - 104 (+56) - -
Number of frost-free days 81 - - 105 (+24) - - 115 (+34) - - 121 (+40) - - 124 (+43) - - 147 (+66) - -
1Equal to the number of continuous frost-free days per year

Precipitation 
(mm)

Air 
Temperature 
(°C) 

2050s 2080s
RCP4.5 RCP8.5 RCP4.5

2011 - 2020
RCP8.5

1961-1990
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Vascular Plants 

Hairy Braya (Braya pilosa) 

Hairy braya has a limited range in areas that remained ice-free during the last ice age at Cape 
Bathurst (COSEWIC 2013). Its establishment is limited to areas of bare soil thought to be 
created and maintained by periods of standing water, erosion and disturbance from caribou 
hooves (COSEWIC 2013). Approximately 15% of the known population of hairy braya are 
found on actively eroding coastal habitat that are expected to be lost in the next 100 years, 
while a larger portion of the population remains susceptible to salinization by storm surges. 
Climate change is resulting in habitat loss through coastal erosion, and plant mortality from 
salt spray during storm surges (Harris 2004). The coastline is currently eroding at a rate of 
about 9-10 m/year and is increasing due to a reduction in sea ice and an increase in sea levels 
(Conference of Management Authorities (CMA) 2015). Changes in temperature that continue 
to decrease Arctic Sea ice increase the duration and severity of storm surges that erode 
coastal areas and rates of coastal erosion are increased as coastal soils are destabilized by 
permafrost thaw. Changes in temperatures and precipitation may affect remaining 
populations through stochastic events (e.g. drought, flooding, or other natural disturbance), 
as well as indirectly by impacting species (i.e., caribou) that may have an interacting role in 
creating/maintaining bare soils patches required for establishment and regeneration 
(COSEWIC 2013).  

Mackenzie Hairgrass (Deschampsia mackenzieana) 

Mackenzie hairgrass is an endemic species restricted to sand dune habitats of northwestern 
Saskatchewan and a small portion of southern NWT known collectively as the Athabasca 
dunes. Climate change is thought to be responsible for increasing rates of forest 
encroachment that now surpass rates of dune formation, leading to loss of habitat. Continued 
increases in temperature, and precipitation in particular are likely to continue this trend 
(COSEWIC 2018, Attanayake et al. 2019).  

Mammals 

Little Brown Myotis (Myotis lucifugus) 

Climate change may result in changes in little brown myotis distributions via northward 
range expansions (Humphries et al. 2002, Ingersoll et al. 2013, Burns et al. 2015, Shively and 
Barboza 2017), as well as other habitat changes such as increased forest fires (dependent on 
summer temperature and precipitation; Blyth et al. 2016), increased insect infestations in 
the boreal forest affecting tree density and forest structure (Randall et al. 2011), and shifts 
in tree species and canopy structures for roosting (Lacki 2018, Jung 2020; Slough and Jung 
2020). Changes in temperature and precipitation may reduce water availability, influence 
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food availability (i.e., insect activity and availability), affect thermoregulatory responses, and 
potentially influence the spread of white-nose syndrome, which could cause declines in bat 
reproduction, survival, and population abundance (Rodenhouse et al. 2009, Weller et al. 
2009, Adams 2010, Frick et al. 2010, Maher et al. 2012, Sherwin et al. 2013, O’Shea et al. 
2016, Willis 2017, Hammerson et al. 2017, Besler and Broders 2019, Layng et al. 2019).  

Northern Myotis (Myotis septentrionalis) 

Climate change may result in changes in northern myotis distributions via northward range 
expansions (Ingersoll et al. 2013, Burns et al. 2015), as well as other habitat changes such as 
increased forest fires (depending on temperature and precipitation patterns; Blyth et al. 
2016) and shifts in tree species and canopy structures for roosting (Lausen 2009, Patriquin 
et al. 2016, Lacki 2018, Alston et al. 2019, Jung 2020). Changes in temperature and 
precipitation may reduce water availability and influence food availability through changes 
to insect populations, which could influence reproduction (Adams 2010, Hammerson et al. 
2017, Layng et al. 2019).  

Caribou (Rangifer tarandus) 

Some potential climate change effects may impact all caribou subspecies and populations 
and are worthwhile discussing at the species level. Habitat quality and quantity is primarily 
dependent upon forage accessibility and quality. Caribou are generalist herbivores, able to 
digest a broad range of species and growth forms (Heggberget et al. 2002). Summer forage 
availability is rarely limited but winter forage quality and accessibility is considered a 
dominant influence on caribou abundance (Weladji et al. 2003, Forchhammer and Post 2004. 
Zalatan et al. 2006, Bastille-Rousseau et al. 2013).  

Suitable non-breeding habitat for caribou is vegetated upland habitat, which can be affected 
by the amount and distribution of freshwater habitat. In the Arctic, changes in the coverage 
of freshwater habitat will respond to several factors, including increased evaporation and 
evapotranspiration from longer ice-free seasons, higher air/water temperatures, greater 
vegetation transpiration, increased infiltration due to permafrost thaw, earlier snowmelt, 
increases in spring snowmelt and river flow and decreased hydraulic gradients in near-
coastal areas (Larsen et al. 2014). On balance, these factors are expected to reduce the area 
of freshwater habitat, leading to a potential increase in vegetated upland habitat (Prowse et 
al. 2006).  

Colonization of currently unvegetated areas may increase due to greater vegetation 
production, caused by more rapid decomposition and higher nutrient availability (Dormann 
and Woodin 2002, Weintraub and Schimel 2005). Responses of plant species in the high 
Arctic may favour investments in reproduction rather than growth; an investment in 
producing greater seed crops under a higher temperature scenario may help species 
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colonize unvegetated ground (Arft et al. 1999). Overall, caribou habitat area is expected to 
increase somewhat but it is unlikely to be an important factor in caribou populations. 

Winter forage availability is primarily affected by snow and ice condition and extent (Hansen 
et al. 2011). Snow conditions in the winter may reduce access to forage and have strong 
negative effects on both the growth rate and demographic structure of caribou populations 
(Post et al. 2009, Miller and Barry 2009b, Stien et al. 2010, Hansen et al. 2011, Berteaux et al. 
2017). Extreme weather events from unseasonal warm spells and rain-on-snow events can 
cause changes in snow pack properties, and changes to freeze-thaw cycling that increase 
snow thermal conductivity and hardness and decrease snowpack thickness (Sturm and 
Benson 1997). It can also cause ground icing (Loe et al. 2016), creating areas of hard snow 
and ice where forage is inaccessible (Hansen et al. 2011). These effects diminish areas of 
suitable habitat, requiring greater travel to access foraging sites (Berteaux et al. 2017), 
increasing associated energetic costs (Loe et al. 2016) and potentially increasing 
vulnerability to predators. In Svalbard, the annual number of days with heavy rain-on-snow 
events had a strong negative effect on population growth rates (Hansen et al. 2011), and 
more moderate rain-on-snow events can reduce fecundity (Stien et al. 2012). In extreme 
cases, forage can become inaccessible. The most extreme rain-on-snow events have caused 
massive reindeer mortality in Norway, Siberia and Canada (Miller and Barry 2009b, Hansen 
et al. 2014, Sokolov et al. 2016).  

Eighty percent of population variation in Svalbard reindeer was explained by mean winter 
ground-ice thickness (Kohler and Aanes 2004). Population die-offs of between 33% and 83% 
resulting from unfavourable snow conditions and poor forage access have been recorded on 
the Queen Elizabeth Islands (Miller and Barry 2009b). 

Caribou responses to physiological factors are expected to be relatively neutral overall. 
Exposure to weather-related disturbances presents the greatest vulnerability while other 
factors are neutral or confer some resilience. The key caribou physiological response that 
confers some resilience to climate change is their ability to vary patterns of movement, 
forage and reproduction. For example, following a winter in which 98% of upland terrestrial 
habitat was covered with snow, some Svalbard reindeer adapted to foraging on kelp along 
the coastal ice line (Hansen and Aanes 2012). Caribou will display large behavioural changes 
to ground-icing, including exploratory movements across natural barriers (Stien et al. 2010), 
range expansion to steep mountainous habitat (Hansen et al. 2010), and movement to areas 
with better forage access (Loe et al. 2016).  

Climate change interactions with phenology are not expected to be an important factor 
conferring resilience or vulnerability to caribou. The resource peaks tied to caribou survival 
and fecundity are associated with forage accessibility but not necessarily forage species 
phenology.  
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The interaction between caribou and other biota represents some vulnerability to climate 
change. Forage quality is expected to decrease, caused by a shift in the distribution of plant 
species and types. While caribou are generalist foragers, forage species and plant types vary 
in their nutrition and digestibility. Forage quality depends mainly on plant species 
composition in the diet (Heggberget et al. 2002). On average, vegetation biomass is expected 
to increase as a result of warming in the Arctic (Larsen et al. 2014). Future changes in Arctic 
vegetation are expected to be driven by increased nutrient availability, arising from 
temperature-induced increases in mineralization (Dormann and Woodin 2002). Forage 
quality may diminish if nitrogen content of key forage species diminishes because of higher 
CO2 concentrations and increased temperatures resulting from climate change (Heggberget 
et al. 2002, Turunen et al. 2009).  

Changes in forage species abundance, distribution and cover are also a likely response to 
climate change. In particular, shrubs are expected to increase at the expense of other plant 
functional types. Shrub biomass, cover and distribution have expanded in many areas of the 
Arctic over recent decades, likely as a result of climate change (Sturm et al. 2001 and 2005, 
Tape et al. 2006, Myers-Smith et al. 2011, Ropars and Boudreau 2012). On Ellesmere Island, 
bryophyte and evergreen shrub abundances increased while deciduous shrub, forb, 
graminoid and lichen cover did not change (Hudson and Henry 2009). Experimental 
manipulation of warmth, shading and fertilization revealed that responses are community-
dependent: shrubs and bryophytes increased in two of three communities as a response to 
increased warming but lichen abundance decreased in all communities (Edwards and Henry 
2016). Warmer climate in the Canadian Arctic increased plant biomass in summer pastures 
but was associated with an increase in poor quality forage shrubs such as birch and alder 
(Betula nana exilis, Betula glandulosa, and Alnus viridus), a decrease in high quality forage 
quality, and a concurrent decline in caribou populations (Fauchald et al. 2017) This may 
signal a transition from a system with low plant biomass to one dominated by low quality or 
non-edible shrubs and diminishing caribou populations (Fauchald et al. 2017). Most but not 
all studies support an expansion of shrub coverage in the Arctic and a resulting decrease in 
forage quality for caribou, for example, a meta-analysis of responses of tundra plants to 
experimental warming found a stronger positive response of herbaceous plants than woody 
plants to warming (Arft et al. 1999).  

In the boreal forest, fire frequency and intensity are expected to increase as a result of 
climate change, resulting in dramatic reductions to lichen-producing vegetation types (i.e., 
spruce forests and tundra >60 years old), and likely causing population declines and 
distribution among boreal caribou (Gustine et al. 2014, Barber et al. 2018) 

The physiological thresholds of caribou are not known. No studies were found that cited 
exceedance of physiological thresholds as a causal factor in survival or fecundity; however, 
heat stress and pest prevalence may increase because of climate change. For example, 
woodland caribou show a strong preference for areas with waterbodies and residual snow 
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patches to help reduce heat stress (Ion and Kershaw 1989, Racey 2005). An increase in 
temperatures is expected to reduce the effectiveness of these temperature refugia. Higher 
temperatures are also predicted to increase the number and range of parasitic insects such 
as mosquitoes (Aedes spp.), warble flies (Hypoderma tarandi) and winter ticks (Dermacentor 
albipictus) (Witter et al. 2012a, Culler et al. 2015, Simard et al. 2016, Joly et al. 2020). Thus, 
while physiological thresholds may not be a direct a limiting factor in caribou populations, 
increased heat and predator stress may be additive to other factors and cause fitness or 
behavioural changes that ultimately reduce survival or fecundity.  

Literature addressing climate change impacts to subspecies and populations at risk in the 
NWT are summarized below.  

Dolphin and Union Caribou (Rangifer tarandus groenlandicus – Dolphin and Union 
population)  

Increases in temperature are expected to result in changes in vegetation and sea ice cover, 
affecting Dolphin and Union caribou summer ranges and pasture quality (Fauchald et al. 
2017). Climate change is likely to influence sea ice habitat and affect migration (Poole et al. 
2010). 

Boreal Caribou (Rangifer tarandus caribou – Woodland boreal population) 

Climate change may influence boreal caribou habitat and affect movements (Bauduin et al. 
2018). Increases in temperature are expected to result in changes in vegetation, community 
composition, and predation risk, as well as long term population persistence (Barber et al. 
2018, Serrouya et al. 2021).  

Peary Caribou (Rangifer tarandus pearyi) 

Increases in temperature are expected to result in changes in vegetation, insect harassment, 
parasite exposure, and predation risk for Peary caribou (Festa-Bianchet et al. 2011, Kaluskar 
et al. 2020a and b). Changes in temperature and precipitation are expected to influence the 
incidence of severe winters and rain-on-snow events, which cause Peary caribou declines 
and affect the potential for recovery (Gunn et al. 2000, Miller and Gunn 2003, Tews et al. 
2007b and 2007a, Miller and Barry 2009a, Langlois et al. 2017, Kaluskar et al. 2020a and 
2020b). Climate change is likely to influence sea ice habitat and affect movements from 
reduced landscape connectivity, and population viability (Jenkins et al. 2016, Mallory and 
Boyce 2019). 

Barren-ground Caribou (Rangifer tarandus groenlandicus – Barren-ground 
population)  

Increases in temperature are expected to increase forest fire incidence and severity 
(depending on precipitation patterns), which could decrease the quality of available winter 
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habitat for barren-ground caribou (Barrier and Johnson 2012, Joly et al. 2012, Blyth et al. 
2016). Increases in temperature are also expected to result in changes in vegetation quality 
and insect harassment (Brotton and Wall 1997, Witter et al. 2012b, Zamin et al. 2017, 
Mallory et al. 2018). Changes in temperature and precipitation are expected to reduce snow 
cover, with consequences for migration timing, foraging, reproduction, and survival (Dolant 
et al. 2018, Mallory et al. 2020). 

Northern Mountain Caribou (Rangifer tarandus caribou – Woodland northern 
mountain population) 

In addition to increased incidence of disease, parasites, and heat stress, changes in 
temperature and precipitation (snowfall) may result in changes in vegetation composition, 
forest fire frequency and severity, permafrost, and ice patch critical habitat, which would 
alter northern mountain caribou habitat availability as well as potentially increase predation 
risk (Environment Canada 2012, Hegel and Russell 2013, Species at Risk Committee 2020, 
White et al. 2020, Serrouya et al. 2021).  

Collared Pika (Ochotona collaris) 

For collared pika, projected increased temperatures, changes in the timing of snowmelt, 
altered precipitation, and increased freeze-thaw events may lead to vegetation changes, 
distribution shifts, increased competition with rodents, exposure to parasites, changes in 
food cache quality, changes in the timing of reproduction, and reduced survival (Franken and 
Hik 2004, Morrison and Hik 2007, Morrison et al. 2009, Sutton et al. 2016, Foley et al. 2017, 
White et al. 2018, Kukka et al. 2020). 

Grizzly Bear (Ursus arctos) 

Increased temperatures and altered precipitation may cause a shorter denning season for 
grizzly bears, reduced availability of suitable denning areas, increased human-bear conflicts, 
and changes in vegetation/foraging due to both a longer growing season and increased forest 
fires (Mattson 2001, Rodríguez et al. 2007, Graves et al. 2011, Fisher et al. 2014, Ripple et al. 
2014, Roberts et al. 2014, Stenset et al. 2016, Pigeon et al. 2016, Lyons et al. 2018, Ransom 
et al. 2018, Berman et al. 2019, Hilderbrand et al. 2019, Tammeleht et al. 2020). Grizzly bear 
northward range expansion in response to climate change is expected to lead to changes in 
foraging ecology, predator-prey relationships, and competition (Rockwell et al. 2008, Barker 
et al. 2015, Pongracz et al. 2017, Clark et al. 2019, Barnas et al. 2020). 

Wood Bison (Bison athabascae) 

Higher temperatures, increased forest fires, drought, vegetation shifts, and changes in 
hydrology may reduce wood bison habitat (Mitchell and Gates 2002, Foote and Krogman 
2006, Strong and Gates 2009, Korosi et al. 2017). Changing patterns in precipitation due to 
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climate change may be leading to increased prevalence of zoonotic diseases in wood bison 
such as Leptospirosis (Harms et al. 2019). 

Wolverine (Gulo gulo - Western population) 

Increased temperatures and snowpack declines are expected to affect wolverine distribution 
and reduce availability of denning areas, leading to range contractions and affecting 
population dynamics (Brodie and Post 2010, Copeland et al. 2010, McKelvey et al. 2011, 
Peacock 2011, Hof et al. 2012, Inman et al. 2012, Elmhagen et al. 2015, Heim et al. 2017, 
Magoun et al. 2017, Ray et al. 2018, Barsugli et al. 2020). Increased temperatures and freeze-
thaw events may affect food availability, increase competition, and affect food cache quality 
(Lofroth et al. 2007, Inman and Packila 2015, Sutton et al. 2016, van der Veen et al. 2020), as 
well as increase risk of parasite emergence (Sharma et al. 2019, Watson et al. 2020). 

Polar Bear (Ursus maritimus) 

Climate change-induced sea ice loss affects migration, land use, denning, energetics, foraging, 
and fasting (Cherry et al. 2009 and 2013, McKinney et al. 2013 and 2017, Laidre et al. 2015, 
2018 and, 2020, Atwood et al. 2016, Stern and Laidre 2016, Olson et al. 2017, Pilfold et al. 
2017, Durner et al. 2017, Boucher et al. 2019, Johnson et al. 2019 and 2020). The Southern 
Beaufort Sea population has experienced declines in condition, reproduction, survival, and 
abundance related to sea ice decline (Rode et al. 2010, 2014 and 2018, Bromaghin et al. 
2015). Projected sea ice declines will further reduce habitat and thus affect polar bear 
foraging ecology, energetics, reproduction, and survival, with expected population decline 
and potential extirpation in the Southern Beaufort Sea by mid-century (Amstrup et al. 2008, 
Laidre et al. 2008, Durner et al. 2009, Hunter et al. 2010, Molnár et al. 2010, 2011 and 2020, 
Castro de la Guardia et al. 2013, Hamilton and Derocher 2019). 

Birds 

Short-eared Owl (Asio flammeus) 

Climate change is expected to alter the freeze and thaw cycle, which may result in changes 
to key prey population cycles, resulting in limited resource availability for the short-eared 
owl (Gilg et al. 2009). Changes in precipitation and temperature may increase shrub density 
in the tundra and the Arctic, which may further impact the availability of key prey species 
(Reid et al. 2011). Changes in resource availability will inevitably impact reproduction and 
nest survivorship, species distribution, and abundance (Gilg et al. 2009, Booms et al. 2014). 
In addition to climate change impacts, latitudes south of Alaska are shown to be of highest 
concern for the short-eared owl species, as a result of grassland habitat degradation due to 
agricultural and development activities (Swengel and Swengel 2013, Booms et al. 2014, 
Johnson et al. 2017). 
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Rusty Blackbird (Euphagus carolinus) 

Climate change is expected to result in changes to the rusty blackbird’s boreal wetland 
habitat through drying and alterations in the hydrological cycle ( COSEWIC 2006, Hamel et 
al. 2009, Greenberg and Matsuoka 2010, Savard et al. 2011, Edmonds et al. 2012, 
Environment and Climate Change Canada 2015). Rising temperatures will further reduce the 
abundance of macroinvertebrate prey breeding in wetlands (McClure et al. 2012). Such 
changes will threaten key habitat and resource availability, as well as breeding and 
reproduction success. The breeding distribution of the rusty blackbird is expected to 
continue to track northward as warming southern habitat becomes unsuitable, leading to a 
contraction of the species’ range (McClure et al. 2012, Environment and Climate Change 
Canada 2015, Stralberg et al. 2019).  

Insects 

Four insect species have been assessed under the Species at Risk (NWT) Act, including three 
bumble bees (Bombus spp.) and one beetle. Suckley’s cuckoo bumble bee has not been 
assessed in the NWT at this time, but has been included here, given its association with the 
western bumble bee. Little research has been completed on climate change impacts to 
bumble bees but climate has been shown to play a role in species assemblages and 
distribution (Iserbyt and Rasmont 2013, Fourcade et al. 2019).  

Gypsy Cuckoo Bumble Bee (Bombus bohemicus) 

The gypsy cuckoo bumble bee inhabits a narrow range of mid to high elevation and high-
altitude habitat and exhibits social parasitism when conceiving offspring. It thus relies on its 
host species for reproduction and survival and will be directly affected by declines in the 
populations of its host species (rusty-patched bumble bee, yellow-banded bumble bee and 
Western bumble bee). More frequent heat waves and droughts are expected to directly 
increase this cold-adapted bumble bee species’ mortality due to physiological limitations 
(Williams et al. 2009, Soroye et al. 2020).  

Suckley’s Cuckoo Bumble Bee (Bombus suckleyi) 

Limited research has been completed to determine the effects of climate change on the 
Suckley’s cuckoo bumble bee. Similar to the gypsy cuckoo bumble bee, the Suckley's cuckoo 
bumble bee is currently in decline as a direct result of the decline of the Western bumble bee, 
which is its main host species (COSEWIC 2019). This trend is expected to continue because 
of contracting bumble bee ranges in response to climate change (COSEWIC 2019). 
Phenological mismatches are a risk for gypsy cuckoo bumble bee and other bumble bee 
species discussed here. Two bumble bee species that co-occur with Suckley’s cuckoo bumble 
bee, among others, are emerging ten days earlier than a century ago due to climate change, 
potentially leading to a mismatch with host plant phenology (Bartomeus et al. 2011). To a 
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degree, advanced emergence of pollinators may help these species keep pace with earlier 
food plant flowering (Kudo and Ida 2013, Forrest 2015, Rafferty 2017); nonetheless, the risk 
of this mismatch is considered a potential effect in global insect population declines. 
Evidence suggests that the potential for pollinator-plant phenology mismatches may be 
highest among Arctic species (Høye et al. 2013, Rafferty 2017).  

Western Bumble Bee (Bombus occidentalis mckayi) 

The Western bumble bee mostly pollinates flowers with short petals due to the short length 
of its tongue. At least 50% of the species’ range is in Canada and recent studies suggest that 
the species remains common (COSEWIC 2014, MacPhail et al. 2020). The southern 
subspecies of Western bumble bee (B. occidentalis) is currently experiencing a northward 
decline of unknown cause, suggesting the northern species is potentially at risk as a result of 
increasing temperatures surpassing its physiological thresholds (COSEWIC 2014). Like 
many other bumble bee species, known threats which could be worsened by a changing 
climate include disease transmission from exotic greenhouse bumble bees, pesticide use 
(neonicotinoid compounds), and habitat loss as a result of agriculture and development 
(COSEWIC 2014, Graves et al. 2020).  

Yellow-banded Bumble Bee (Bombus terricola) 

The yellow-banded bumble bee emerges particularly early in spring and has late production 
of queens and males at the end of summer making its nesting and plant forage availability 
particularly susceptible to extreme weather events in spring and fall, the intensity of which 
may increase as a result of climate change (Colla and Dumesh 2010, COSSARO 2016). The 
yellow-banded bumble bee has experienced a southern range contraction and a shift into 
higher elevation habitat because of warming temperatures and this trend is expected to 
continue, which will eventually limit habitat and resource availability (Kerr et al. 2012, 
Committee on the Status of Species at Risk in Ontario 2016, Jacobson et al. 2018). Decreasing 
body size has been observed in the yellow-banded bumble bee with increasing habitat 
elevation over time, suggesting a range shift to higher elevations may lead to decreased 
survivorship (Colla et al. 2006, Williams et al. 2009, CaraDonna et al. 2018, Nooten and Rehan 
2020). 

Transverse Lady Beetle (Coccinella transversoguttata) 

Climate change is expected to lead to a northward range shift in the transverse lady beetle’s 
habitat (Kawakami et al. 2014). The insect’s predominantly heath habitat in Arctic and sub-
Arctic ecosystems is expected to be susceptible to moisture regime changes associated with 
climate change (Hansen et al. 2016). Temperature shifts will significantly affect prey 
availability and quantity, which may alter reproduction and larval success (Kawakami et al. 
2014 and 2015, Sloggett 2017, Linton and McCorquodale. 2019). Changes in temperatures 
and solar radiation can have an effect on phenological traits such as body size (Kawakami et 
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al. 2014 and 2015). Increased rainfall may decrease the probability of colonization at higher 
latitudes (Comont et al. 2013). The current global decline of the transverse lady beetle is 
generally concluded to be a result of invasive species (mainly the multicoloured Asian lady 
beetle and the seven-spotted lady beetle), which have led to intraguild predation, direct 
competition, and the introduction of pathogens (Turnock et al. 2003, Evans 2004, Comont et 
al. 2013, COSEWIC 2016, Environment and Natural Resources 2018, Linton and 
McCorquodale. 2019). The higher latitude habitat range of the transverse lady beetle will be 
susceptible to shifts in invasive species habitat ranges, which are expected to trend 
northward with climate change (Environment and Natural Resources 2018). Transverse 
lady beetle has some capacity to adapt to climate change through high reproductive and 
dispersal capacity, as well as summer dormancy, overwintering behaviour and cold 
tolerance that allow the species to survive in a wide variety of habitats and conditions 
(COSEWIC 2016). This adaptive capacity is expected to reduce vulnerability to climate 
change to a degree; thus, the overall level of vulnerability at the species level is not yet clear.  

Amphibians 

Northern Leopard Frog (Lithobates pipiens - Prairie and Western Boreal population) 

Climate change may result in changes to Northern leopard frog habitats, particularly 
breeding and overwintering habitat, as hydrological changes alter wetlands while droughts 
and floods cause habitat loss (Pitchford et al. 2012, Mushet et al. 2013, Shank and Nixon 
2014, Grant et al. 2015, Stockwell et al. 2016, Lannoo and Stiles 2020). Climate warming and 
precipitation changes are expected to affect host-pathogen interactions and potentially 
increase the risk of infections (Rollins-Smith 2017). Breeding phenology has already been 
impacted by climate warming in some areas (Klaus and Lougheed 2013) and climate change 
is predicted to reduce genetic diversity (Mushet et al. 2013, Stockwell et al. 2016). 

Western Toad (Anaxyrus boreas) 

While climate change-induced droughts may affect their habitats, Western toads have 
broader historical hydrological niches and are therefore likely to be less vulnerable than 
Northern leopard frogs (Shank and Nixon 2014, Slough and DeBruyn 2018, Thurman and 
Garcia 2019). Hibernation and breeding phenology may be affected by climate warming 
(Blaustein et al. 2001, Browne and Paszkowski 2010, Slough and DeBruyn 2018). Climate 
warming and droughts are expected to influence western toad physiology by increasing 
physiological costs, exceeding thermal and water loss limits, and affecting larval 
development (Bartelt et al. 2010, Thurman and Garcia 2017, Slough and DeBruyn 2018, 
Thurman and Garcia 2019, Lertzman-Lepofsky et al. 2020). Climate warming and 
precipitation changes are expected to affect host-pathogen interactions and potentially 
increase the risk of infections (Olson 2009, Schock et al. 2010, Kiesecker 2011, McKelvey and 
Buotte 2018, Bradley et al. 2019). 
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DISCUSSION 
Climate change has caused impacts to human and natural systems on all continents and 
across all oceans in recent decades (IPCC 2014). Climate stresses related especially to severe 
heat, heavy precipitation and declining snowpack will increase in frequency and severity in 
North America (Romero-Lankao et al. 2014) and these stresses are expected to be 
particularly severe in polar regions (Larsen et al. 2014). Effects will occur within terrestrial 
and inland water systems (Settele et al. 2014), freshwater resources (Jiménez Cisneros et al. 
2014) and especially coastal systems and low-lying areas due to the interacting effects of 
temperature, sea level rise and changes to sea ice (Wong et al. 2014). These effects are 
expected to exacerbate existing threats to species at risk, in particular at high latitudes 
(Larsen et al. 2014, Romero-Lankao et al. 2014). Changes to climate parameters such as 
temperature, the amount, timing and type of precipitation, and sea levels will cause indirect 
effects to the persistence and distribution of permafrost, the distribution of tundra and 
boreal forest, vegetation structure, timing and magnitude of biomass production, phenology, 
and migration of many species, as well as a multitude of inter-related factors (Larsen et al. 
2014, Romero-Lankao et al. 2014).  

Projected climate change effects vary according to a species status, distribution and 
interactions with other species and the physical environment. In the NWT, one plant species 
is on the NWT List of Species at Risk: hairy braya. Climate change is projected to negatively 
this species. Highly restricted habitats and small known population size for this endemic 
species means these populations are vulnerable to projected changes that include continued 
habitat loss for coastal erosion (COSEWIC 2013 and 2018, Attanayake et al. 2019). Moreover, 
the endemic nature of this species and reliance on unique and isolated habitats leaves it 
vulnerable to more widespread changes including weather extremes that affect moisture 
availability, and other factors related to mortality and productivity (e.g. winter survival). 
Hypothesized biotic interactions for habitat creation and establishment of hairy braya 
through soil disturbance by caribou will also be impacted by the concomitant effects of 
climate change on these species (COSEWIC 2013).  

Climate change is likely to result in habitat loss, affect habitat use, reduce connectivity, 
and/or influence distributions for all mammals examined (Jenkins et al. 2016, Stern and 
Laidre 2016, Korosi et al. 2017, Bauduin et al. 2018, Slough and Jung 2020). This includes 
vegetation shifts, increased forest fire occurrence and intensity, sea ice habitat loss, altered 
wetlands, and changes in snowpack (Strong and Gates 2009, Barrier and Johnson 2012, 
Gustine et al. 2014, Laidre et al. 2020). Habitat changes are likely to be negative for most 
species except for grizzly bear and bat species, whose ranges are expected to expand in 
response to climate change (Humphries et al. 2002, Clark et al. 2019, Barnas et al. 2020). 
Caribou, collared pika, wood bison, wolverine, and polar bears were identified as particularly 
vulnerable to habitat loss associated with climate change (Durner et al. 2009, Copeland et al. 
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2010, Cherry et al. 2013, Barsugli et al. 2020, Kukka et al. 2020). Climate change may also 
affect biotic interactions for mammals, including changes in predator-prey interactions, food 
availability, competition, insect infestations, and parasite exposure (Inman and Packila 2015, 
Sharma et al. 2019, Barnas et al. 2020, Watson et al. 2020). Altered biotic interactions are 
likely to influence all mammals examined and this is expected to be especially prominent for 
caribou, collared pika, wolverine, and polar bears (Barker et al. 2015, Sutton et al. 2016, 
Foley et al. 2017, Clark et al. 2019, van der Veen et al. 2020). Overall, these changes in habitat 
availability and biotic interactions are expected to affect population dynamics, in particular 
for caribou (especially Peary caribou) and polar bears (Amstrup et al. 2008, Castro de la 
Guardia et al. 2013, Jenkins et al. 2016, Mallory and Boyce 2019). 

Climate change is projected to result in southern habitat loss and northward species range 
shifts for short-eared owl and rusty blackbird (McClure et al. 2012, Swengel and Swengel 
2013, Booms et al. 2014, Environment and Climate Change Canada 2015, Johnson et al. 2017, 
Stralberg et al. 2019). Vegetation shifts, hydrological changes and droughts are all expected 
to further contribute to habitat loss (COSEWIC 2006, Greenberg and Matsuoka 2010, 
Greenberg et al. 2011, Edmonds et al. 2012, Environment and Climate Change Canada 2015). 
Avian phenology and breeding success is highly dependent on resource availability and 
weather patterns and may be altered by the effects of climate change (McClure et al. 2012, 
Environment and Climate Change Canada 2015, Stralberg et al. 2019).  

Climate change may result in contractions of bumble bee habitat ranges and affect species 
richness, especially in their southern ranges and particularly in species that inhabit regions 
at higher latitudes and elevations (Colla et al. 2012, Kerr et al. 2012, Arbetman et al. 2017, 
Jacobson et al. 2018, Mathiasson and Rehan 2019, Nooten and Rehan 2020). Extreme 
weather events, such as drought, heatwaves and fires are expected to aggravate habitat shifts 
and degradation through their effects on flowering species (Pradervand et al. 2014, Loffland 
et al. 2017, Graves et al. 2020). More frequent extreme weather events may also lead to 
increased mortalities as bumble bees meet their physiological thresholds. Bumble bee body 
size is expected to decrease as a response to decreasing resource availability (Sanderson et 
al. 2015, Nooten and Rehan 2020, Soroye et al. 2020). Changes in temperature and increased 
rainfall is expected to detrimentally affect breeding phenology (Colla and Packer 2008, Grixti 
et al. 2009, Bartomeus et al. 2011, Cameron et al. 2011, Colla et al. 2012, Soroye et al. 2020). 

Climate change may change northern leopard frog and western toad habitats, particularly 
breeding and overwintering habitat, as hydrological changes alter wetlands while droughts 
and floods cause habitat loss (Mushet et al. 2013, Grant et al. 2015, Thurman and Garcia 
2019, Lannoo and Stiles 2020). Hibernation and breeding phenology may be affected by 
climate warming (Blaustein et al. 2001, Browne and Paszkowski 2010, Klaus and Lougheed 
2013, Slough and DeBruyn 2018). Climate warming and droughts are expected to influence 
amphibian physiology by increasing physiological costs, exceeding thermal and water loss 
limits, and affecting larval development (Bartelt et al. 2010, Thurman and Garcia 2017 and 
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2019, Slough and DeBruyn 2018, Lertzman-Lepofsky et al. 2020). Climate warming and 
precipitation changes are expected to affect host-pathogen interactions and potentially 
increase the risk of infections (Olson 2009, Schock et al. 2010, Kiesecker 2011, Rollins-Smith 
2017, McKelvey and Buotte 2018, Bradley et al. 2019). 
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